
GSA Point-to-Point WebSocket Transport Specification v2.0 Chapter 1
Look Inside Overview

Released: 2016/03/14 Page 1
© 2016 Gaming Standards Association (GSA)

Chapter 1

Look Inside

Overview

GSA Point-to-Point WebSocket Transport Specification v2.0 Chapter 1
Look Inside Overview

Page 2 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

1.1 Introduction
This document defines requirements that must be met by gaming devices, hosts, and messaging protocols to
be compliant with the GSA Point-to-Point WebSocket Transport Specification.

The GSA Point-to-Point WebSocket Transport Specification builds upon the GSA Network & Security
Specification. The GSA Network & Security Specification provides the underlying foundation for the GSA
Point-to-Point WebSocket Transport Specification. An implementation MUST be compliant with the GSA
Network & Security Specification to be compliant with the GSA Point-to-Point WebSocket Transport
Specification.

The GSA Transport Negotiation Specification provides a convenient method for clients to determine the
services supported by service hosts. An implementation MUST be compliant with the GSA Transport
Negotiation Specification to be compliant with the GSA Point-to-Point WebSocket Transport Specification.

GSA Point-to-Point WebSocket Transport Specification v2.0 Chapter 1
Look Inside Overview

Released: 2016/03/14 Page 3
© 2016 Gaming Standards Association (GSA)

1.2 Acronyms
Most of the standards and technologies on which the GSA Point-to-Point WebSocket Transport Specification
is based are referred to using acronyms. These acronyms appear throughout this document. Refer to Section
I.IV, Acronyms, for descriptions.

GSA Point-to-Point WebSocket Transport Specification v2.0 Chapter 1
Look Inside Overview

Page 4 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

1.3 Terminology
The distinctions between the following terms can lead to confusion:

• server (a program providing a service),

• client (a program using a service),

• service (work performed by a server for a client), and

• service host (a computer on which one or more servers reside).

• host entity (a role defined by a protocol or profile).

• client entity (a role defined by a protocol or profile).

Refer to Section I.III, Definitions, for further information on these and other terms.

GSA Point-to-Point WebSocket Transport Specification v2.0 Chapter 2
Look Inside WebSocket Transport

Released: 2016/03/14 Page 5
© 2016 Gaming Standards Association (GSA)

Chapter 2

Look Inside

WebSocket Transport

GSA Point-to-Point WebSocket Transport Specification v2.0 Chapter 2
Look Inside WebSocket Transport

Page 6 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

2.1 Introduction
This chapter defines a communications mechanism that uses The WebSocket Protocol for full-duplex
communications over a single TCP connection. Although initially designed to serve as a communication
protocol between web browsers and web servers, The WebSocket Protocol is well suited for communication
between any client and any server application.

Within the GSA Point-to-Point WebSockets Specification, a variety of payloads can be communicated within a
message, including:

• XML messages (xml),

• GZIP-compressed XML messages (xml-gzip), and

• EXI-encoded messages (exi).

The GSA Transport Negotiation Specification MUST be used to determine which types of payloads are
actually supported by a service host as well as the URIs and security schemes of the associated services. See the
GSA Transport Negotiation Specification for more details.

Per the GSA Network & Security Specification, clients and service hosts must support secure TLS
communications as well as unsecure communications. The client MUST use the security scheme specified for a
specific service when communicating with that service. The service host specifies the security scheme for the
service as part of the URI for the service. The URI for the service is reported by the service host in the
gsaService attribute of the response to the client’s transport option request. The token "ws" MUST be used
to specify unsecure WebSocket communications; the token "wss" MUST be used to specify secure WebSocket
communications. The following table provides examples of URIs for services that use the GSA Point-to-Point
WebSocket Transport Specification.

An HTTP GET operation is used by the client to establish the WebSocket connection with the service host.
Once the WebSocket connection has been established, a GSA-defined frame structure is used by the client and
the service host to communicate messages in full-duplex mode over the WebSocket connection; both the client
and the service host can initiate messages over the same connection. See Chapter 3, WebSocket Transport, for
more details.

Table 2.1 gsaService URI Examples

Type URI Example

Unsecure ws://config.casino.com:80/g2s

Secure wss://config.casino.com:443/g2s

GSA Point-to-Point WebSocket Transport Specification v2.0 Chapter 2
Look Inside WebSocket Transport

Released: 2016/03/14 Page 7
© 2016 Gaming Standards Association (GSA)

2.2 Relevant Standards
The following standards are relevant to the generic negotiation mechanism. Clients and service hosts MUST
conform to these standards, and their supporting standards, as specified herein.

Table 2.2 Relevant Standards

Standard Description

EXI Efficient XML Interchange

HTTP RFC 7230 Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing
RFC 7231 Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content

URI RFC 3986 Uniform Resource Identifier (URI): Generic Syntax

WebSockets RFC 6455 The WebSocket Protocol

XML eXtensible Markup Language

GSA Point-to-Point WebSocket Transport Specification v2.0 Chapter 2
Look Inside WebSocket Transport

Page 8 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

2.3 Base URI
The client MUST use the value specified in the gsaService attribute as the base URI for the WebSocket
connection to the service host. Certain message protocols may require that additional information be
appended to the base URI. If no additional information is specified for a message protocol, the client MUST
use the base URI to establish the WebSocket connection to the service host.

2.3.1 G2S URI
When a service supports the G2S message protocol—that is, the gsaProtocol attribute is set to "G2S"—the
client MUST identify the EGM ID and Host ID of the G2S communications association in the URI used to
make the WebSocket connection. This helps reduce the amount of bandwidth required for subsequent
application-layer messages. The following table identifies the format that the client MUST use to form the URI
when value of the gsaProtocol attribute is set to "G2S".

The EGM ID and Host ID MUST be properly encoded for use in a URI. See RFC 3986, Uniform Resource
Identifier (URI): Generic Syntax, for details.

Upon connection, the service host MUST verify the Host ID to ensure that the client is connecting to the
correct service. If the Host ID is not correct, the service host MUST NOT accept the connection and MUST
include HTTP status code "400 Bad Request" in its response.

If the Host ID is correct, the service host MUST store the Host ID and EGM ID as properties of the
WebSocket connection and, subsequently, the service host MUST pass the stored values to the application
layer with each application-layer message. See the G2S Message Protocol for more details on passing values to
the application layer and validating those values. The Host ID and EGM ID are not provided at the transport
layer in subsequent application-layer messages.

The client MUST ensure that the Host ID and EGM ID conform to the following data types and restrictions.

The following table contains examples of fully-formed URIs for services that support the G2S message
protocol using the WebSocket transport.

Table 2.3 G2S URI Format

Type URI Format

Unsecure [gsaService]?EGMID=[URI-encoded EGM ID]&HOSTID=[URI-encoded Host Id]

Secure [gsaService]?EGMID=[URI-encoded EGM ID]&HOSTID=[URI-encoded Host Id]

Table 2.4 Data Types & Restrictions

Identifier Data Type Restrictions

Host ID xs:int 1 <= Host ID <= 2147483647

EGM ID xs:string [A-Z0-9]{3}_[-~]{1,28}

GSA Point-to-Point WebSocket Transport Specification v2.0 Chapter 2
Look Inside WebSocket Transport

Released: 2016/03/14 Page 9
© 2016 Gaming Standards Association (GSA)

Table 2.5 G2S URI Examples

Type URI Format

Unsecure ws://config.casino.com:80/g2s?EGMID=ABC_1234&HOSTID=42

Secure wss://config.casino.com:443/g2s?EGMID=ABC_1234&HOSTID=42

GSA Point-to-Point WebSocket Transport Specification v2.0 Chapter 2
Look Inside WebSocket Transport

Page 10 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

2.4 Opening Handshake
The client MUST initiate WebSocket communications to the service host using an HTTP GET operation.
There are several key HTTP headers that the client MUST include in that initial operation. The following table
identifies those headers and describes what values MUST be included for a successful WebSocket connection
to be negotiated. This is not an exhaustive list. The full definition of the opening handshake and all headers is
available in RFC 6455, The WebSocket Protocol.

2.4.1 Successful Connection
If the WebSocket connection request is successful, the service host will include HTTP status code "101
Switching Protocols" in its response. This indicates that the WebSocket connection has been successfully
negotiated and that the client may commence full-duplex WebSocket communications with the service host.

2.4.2 Unsuccessful Connection
If the WebSocket connection request is not successful, the service host will include an HTTP status code other
than "101 Switching Protocols" in its response. For example, the service host might include status code "400
Bad Request" in its response. See RFC 6455, The WebSocket Protocol, for additional details.

If the WebSocket connection request is not successful, after waiting at least 60 seconds but not more than 5
(five) minutes, the client MUST request transport options once again and, as described in the GSA Transport
Negotiation Specification, try to establish a connection with the service host.

Table 2.6 WebSocket Connection Headers

HTTP Header Expected Value

Upgrade websocket

Connection Upgrade

Sec-WebSocket-Key See RFC 6455, The WebSocket Protocol, for the definition of acceptable
keys.

Sec-WebSocket-Version 13

Sec-WebSocket-Protocol The value reported in the gsaEncoding attribute for the service prepended
to ".gamingstandards.com"; for example, exi.gamingstandards.com.

GSA Point-to-Point WebSocket Transport Specification v2.0 Chapter 2
Look Inside WebSocket Transport

Released: 2016/03/14 Page 11
© 2016 Gaming Standards Association (GSA)

2.5 WebSocket Frame Header
Once the WebSocket connection has been established, clients and service hosts MUST include a standard
WebSocket frame header, as described in RFC 6455, in every subsequent message sent over the connection.

The payloads of the WebSocket frames MUST be binary; that is, clients and service hosts MUST set the
opcode field of the WebSocket frame header to 0x2.

Clients and service hosts MUST NOT utilize WebSocket payload masking. The frame-masked bit MUST be
set to 0 (zero). Per RFC 6455, if the frame-masked bit is set to 0 (zero), the subsequent 4-byte frame-masking-
key is omitted.

GSA Point-to-Point WebSocket Transport Specification v2.0 Chapter 2
Look Inside WebSocket Transport

Page 12 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

2.6 Message Flow
Once the WebSocket connection has been established, both the client and the service host may send messages
over the connection. Full asynchronous communications takes place over the single WebSocket connection.
The service host MUST NOT establish a second connection back to the client.

GSA Point-to-Point WebSocket Transport Specification v2.0 Chapter 2
Look Inside WebSocket Transport

Released: 2016/03/14 Page 13
© 2016 Gaming Standards Association (GSA)

2.7 Persistent Connections
Clients and service hosts MUST support HTTP 1.1 persistent connections. Clients MUST specify persistent
connections when establishing connections. Clients and service hosts MUST maintain persistent connections
for at least five minutes unless the connection is no longer required at the application level.

The intent of these requirements is to avoid frequent use of "close" tokens within HTTP headers as well as
"close" frames within WebSocket headers. These requirements will cause the HTTP session to be kept open
between the client and the service host so that TLS and TCP connections do not have to be recreated more
often than necessary.

GSA Point-to-Point WebSocket Transport Specification v2.0 Chapter 2
Look Inside WebSocket Transport

Page 14 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

2.8 Minimum Message Size
Clients and service hosts MUST be able to receive and process a 4 megabyte or smaller XML message. Senders
do not have a mandated maximum message size requirement but should be aware that messages, which are
larger than 4 megabytes, may not be processed by receivers. This requirement is intended to promote
interoperability by providing senders and receivers with a known limit on the size of messages.

In some cases, such as a WAN environment with limited bandwidth capabilities, a 4 megabyte message may
not be appropriate or desired. In such cases, an alternate message size requirement MAY be established with a
value less than 4 megabytes, agreed upon by the GSA, and clearly identified in the GSA certification
requirements. The alternate message size value MAY override the general requirement of 4 megabytes for
transport certification.

Note that the WebSocket specification includes required features that allow large messages to be divided into
smaller pieces and sent as fragments. Implementations must be prepared to receive large messages in
fragments. See the WebSockets specification for full details.

	Chapter 1 Look Inside Overview
	1.1 Introduction
	1.2 Acronyms
	1.3 Terminology

	Chapter 2 Look Inside WebSocket Transport
	2.1 Introduction
	2.2 Relevant Standards
	2.3 Base URI
	2.3.1 G2S URI

	2.4 Opening Handshake
	2.4.1 Successful Connection
	2.4.2 Unsuccessful Connection

	2.5 WebSocket Frame Header
	2.6 Message Flow
	2.7 Persistent Connections
	2.8 Minimum Message Size

