
GSA Third-Party Game Interface V1.0 Chapter 1
Look Inside Introduction

Released: 2018/02/15 Page 1
© 2018 Gaming Standards Association (GSA)

Chapter 1

Look Inside

Introduction

GSA Third-Party Game Interface V1.0 Chapter 1
Look Inside Introduction

Page 2 Released: 2018/02/15
© 2018 Gaming Standards Association (GSA)

1.1 Introduction
The Third-Party Game Interface is used to integrate Remote Game Services, Progressive Jackpot Services and
iGaming Platforms. The interface includes messages for:

• Discovering and configuring the games available on a Remote Game Service,

• Launching games supported by the Remote Game Service,

• Reporting wagers and wins from the Remote Game Service,

• Communicating state information between Remote Game Content and an iGaming Console,

• Discovering the progressive jackpots available on a Progressive Jackpot Service,

• Reporting contributions to the progressive jackpots on the Progressive Jackpot Service, and

• Managing the award of progressive jackpots by a Remote Game Service.

The Third-Party Game Interface does not include other messages that may be necessary to operate an
iGaming website such as messages for logging onto the website, transferring funds to the website, verifying
player identification, establishing geo-location, etc. These messages are beyond the scope of this specification.

...(continued)...

GSA Third-Party Game Interface V1.0 Chapter 6
Look Inside Game Play

Released: 2018/02/15 Page 121
© 2018 Gaming Standards Association (GSA)

Chapter 6

Look Inside

Game Play

GSA Third-Party Game Interface V1.0 Chapter 6
Look Inside Game Play

Page 122 Released: 2018/02/15
© 2018 Gaming Standards Association (GSA)

6.1 Introduction
During game play, the player will make wagers and, possibly, receive wins. These activities result in Monetary
Transactions between the RGS and the iGP. The Monetary Transactions are generated by the RGS and then
authorized or denied by the iGP. The RGC should not display the result of a Monetary Transaction until it has
been successfully authorized by the iGP.

The RGS has broad discretion in determining what constitutes a Monetary Transaction. In simple cases, a
Monetary Transaction may be a single wager on a spinning reel game or the buy-in to a multi-player poker
game. In more complex cases, a Monetary Transaction may encompass a series of wagers made on a sporting
event or roulette game. The game design will tend to dictate what constitutes a Monetary Transaction.

The RGS also has broad discretion in determining when to report Monetary Transactions to the iGP.
Depending on the game design, wagers and wins may be reported to the iGP at the same time or they may be
reported at different times. For example, when spinning reel game is being played, the RGS might report the
wager and the win at the same time. In other cases, such as sports betting, the RGS might report the wager at
the time that the wager is placed and, subsequently, report the win when the outcome of the sporting event or
poker game is known.

When a game allows multiple bets, each bet may be reported to the iGP individually or all bets may be reported
as a group. For example, as a player is placing wagers on a roulette game, the RGS might report each wager
individually. Alternatively, the RGS might wait until all wagers have been made and then report all wagers at the
same time.

6.1.1 Starting and Finishing Game Cycles
The TPI_startGameCycle command is used by the RGS to explicitly tell the iGP that a new Game Cycle has
started. The TPI_endGameCycle command is used by the RGS to explicitly tell the iGP that a Game Cycle has
finished. While a Game Cycle is unfinished, the RGS may use the TPI_moneyTransactions,
TPI_cancelTransactions, and TPI_cancelGameCycle commands to post and cancel Monetary Transactions
associated with the Game Cycle. After a Game Cycle is finished, the gameCycleFinished property of the
Game Cycle MUST be set to true and subsequent TPI_moneyTransactions, TPI_cancelTransactions, and
TPI_cancelGameCycle commands MUST NOT be accepted by the iGP for the Game Cycle.

After the RGS has reported that a Game Cycle has been finished, the RGS MUST NOT attempt to post or
cancel any additional Monetary Transactions for the Game Cycle. If the RGS makes such a request, the iGP
MUST deny the request and include error code ERR034 Game Cycle Finished in its response.

The RGS cannot reopen a Game Cycle by sending a TPI_startGameCycle command with the same Game
Cycle Identifier. If the RGS makes such a request, the iGP will respond with a logically equivalent
TPI_startGameCycleAck command, however the Game Cycle will not be reoponed. Once a Game Cycle has
been finished and the gameCycleFinished property has been set to true, the iGP MUST NOT reopen it.

The gameCycleExc property is used to indicate whether the Game Cycle was finished normally — that is, the
Game Cycle was played to completion without interruption or errors.

• If the Game Cycle was finished normally, the RGS MUST set the gameCycleExc property to 0 (zero).

• If the Game Cycle was not finished normally – for example, due to loss of communications with the
RGC – the RGS MUST set the gameCycleExc property to a value greater than 0 (zero).

• Once the RGS has reported that the Game Cycle has finished, the RGS cannot change the value of
the gameCycleExc property. If the RGS makes such a request, the iGP will respond with a logically
equivalent TPI_endGameCycleAck command, however the Game Cycle Exception will not be changed.

GSA Third-Party Game Interface V1.0 Chapter 6
Look Inside Game Play

Released: 2018/02/15 Page 123
© 2018 Gaming Standards Association (GSA)

Once a Game Cycle has been finished, the iGP MUST NOT change the value of the gameCycleExc
property.

Once the RGS has reported that a new Game Cycle has started, the RGS MUST always report that the Game
Cycle has finished, even if the RGS aborts or otherwise terminates the Game Cycle. Once the RGS has
reported that a Game Cycle has started, the RGS MUST report the final outcome of a Game Cycle to the iGP
in a TPI_endGameCycle command, setting the gameCycleExc property to an appropriate value. The RGS must
assume that the iGP received the commands used to start the Game Cycle even if the RGS does not receive a
response from the iGP.

In addition, if the RGS starts a Game Cycle and then aborts the Game Cycle before any commands associated
with the Game Cycle are sent to the iGP, the RGS MUST still report the final outcome of the Game Cycle to
the iGP, indicating that the Game Cycle was finished and setting the gameCycleExc property to an appropriate
value. This requirement assures that the iGP has a complete record of all Game Cycles started by the RGS.

A player may initiate multiple Game Cycles during a Game Session and, thus, may have multiple unfinished
Game Cycles at the same time during a Game Session. There is no requirement that one Game Cycle be
finished before another Game Cycle begins. In some cases, such as sports betting, all Game Cycles initiated
during a Game Session may be unfinished when the Game Session ends.

6.1.2 Retrying Monetary Transactions
Since the RGS must always report the final outcome of a Game Cycle to the iGP, the RGS may have to retry
the command used to report the final outcome. It is not expected that the RGS will retry all commands
associated with a Game Cycle until acknowledged by the iGP. It is only expected that the RGS will retry the
command that reports the final outcome of the Game Cycle until acknowledged — that is, the iGP has
responded with the prescribed response or an error code.

For example, the RGS might retry a TPI_moneyTransactions command containing the initial wager for a
Game Cycle every 2 seconds. If the iGP does not approve or deny the command within 10 seconds, the RGS
might abort the Game Cycle, stop retrying the TPI_moneyTransactions command, and, instead, start trying a
TPI_endGameCycle command, indicating that the Game Cycle has finished. To meet the requirement that the
final outcome must be reported, the RGS would retry the TPI_endGameCycle command until acknowledged by
the iGP.

Thus, the iGP MUST be prepared to receive TPI_endGameCycle commands that reference Game Cycles that
were never reported in previous TPI_startGameCycle or TPI_moneyTransactions commands. In such cases,
the iGP should accept the new Game Cycle as if it had been reported in a previous TPI_startGameCycle
command; the iGP MUST NOT reject the TPI_endGameCycle command simply because it references an
unknown Game Cycle.

The iGP MUST also be prepared to receive TPI_cancelTransactions commands that contain Monetary
Transactions that were not previously approved by the iGP. In such cases, the iGP should authorize and then
cancel the Monetary Transactions; the iGP MUST NOT reject the TPI_cancelTransactions command
simply because it contains a Monetary Transaction that was not previously authorized.

When retrying commands to meet the requirement that the final outcome of all Game Cycles must be
reported, the RGS SHOULD send the commands as reconciliation commands. This will help assure that the
iGP will still process the commands even though the Game Session might have ended or the Secure Token
might have been discarded. See Section 6.1.4 Reconciliation Commands below for more details.

GSA Third-Party Game Interface V1.0 Chapter 6
Look Inside Game Play

Page 124 Released: 2018/02/15
© 2018 Gaming Standards Association (GSA)

6.1.3 Reporting Associated Game Sessions
It is possible for a Game Cycle to be started in one Game Session and finished in another Game Session. For
example, the player loses network connectivity and returns to finish a game at a later time. It is also possible for
a Game Cycle to be voided or auto-completed outside of a Game Session. For example, the player loses
network connectivity and the jurisdictional rules stipulate that the game be voided.

If a new Game Session is started so that a suspended game can be finished by the player, the RGS MUST
reference the new Game Session when reporting the Monetary Transactions and other commands required to
finish the game, not the Game Session in which the Game Cycle was started.

The new Game Session should have the same properties as the original Game Session, not the properties that
would be used if the new Game Session was being started for new Game Cycles. The brandId, skinId,
gameId, betConfigId, playerId, accountId, currencyCode, gameType, mfgCode, themeId, paytableId,
releaseNum, affiliateId, and jurisdictionCode properties of the original Game Session MUST be used for
the new Game Session. Other properties MAY be different and should reflect the current operating
environment in which the Game Session was started.

In addition, when the new Game Session is started, the RGS MUST reference the Game Session in which the
Game Cycle was originally started as well as the new Game Session. The original Game Session MUST be
reported in the gameReferenceId property of the TPI_startGameSession command. This creates a cross
reference back to the Game Session in which the Game Cycle was originally started. If a new Game Session is
being started for new Game Cycles, the gameReferenceId property MUST be set to <empty> or omitted
from the command.

Once the restored Game Cycle has been finished, the new Game Session MUST be closed. If the player wants
to continue playing the same game, another new Game Session MUST be opened for the new Game Cycles.
The properties used to start the new Game Sessions for new Game Cycles MUST be based on the properties
specified in the Launch URL and TPI_playerSessionAck command, not the original Game Session. The new
Game Session for new Game Cycles should have properties that reflect the current operating environment.

If the game is auto-completed or voided outside of a Game Session and, thus, a new Game Session is not
started, the RGS MUST report the original Game Session — that is, the Game Session in which the Game
Cycle was started — when reporting Monetary Transactions and other commands used to finish the Game
Cycle. There is no need to start a new Game Session.

6.1.4 Reconciliation Commands
The TPI_gameCycleExc property is used to indicate whether a TPI_moneyTransactions,
TPI_cancelTransactions, TPI_cancelGameCycle, or TPI_endGameCycle command is being used for
reconciliation purposes. When the gameCycleExc property is set to a value greater than 0 (zero), the command
MAY be used for reconciliation purposes and the secureToken property MAY be omitted. When commands
are used for reconciliation purposes, it is assumed that the Game Session may have been closed and the Secure
Token associated with the Game Session may have been discarded. Therefore, when a command is used for
reconciliation purposes, the iGP MUST NOT attempt to validate the Secure Token; the Secure Token MUST
be ignored.

6.1.5 Special Transactions
Typically, TPI_moneyTransactions commands are used to request debits and credits to a Player Account.
However, occasionally, the RGS may need to report information associated with a Game Cycle that does not
result in a debit or credit to the Player Account. For example, the RGS may need to report that an in-kind prize
has been won, such as a car. In such cases, the RGS will indicate that a Monetary Transaction is a Special
Transaction rather than a debit or credit to the Player Account. The iGP MUST handle Special Transactions

GSA Third-Party Game Interface V1.0 Chapter 6
Look Inside Game Play

Released: 2018/02/15 Page 125
© 2018 Gaming Standards Association (GSA)

like Monetary Transactions except that the iGP MUST NOT make a debit or credit to the Player Account. The
iGP SHOULD simply include the Special Transactions in its Player Account history and make the information
available to the operator as appropriate.

6.1.6 Player Tracking
For player tracking and game performance purposes, the RGS MUST summarize the turnover, theoretical win,
actual win, games played, and time played during each Game Cycle and then report that information in the
TPI_endGameCycle command when the Game Cycle is finished. The methods used to determine this
information will vary by Game Type.

GSA Third-Party Game Interface V1.0 Chapter 6
Look Inside Game Play

Page 126 Released: 2018/02/15
© 2018 Gaming Standards Association (GSA)

6.2 Sequence Diagrams
The following sequence diagrams illustrate the sequence of commands used during game play. The first
diagram shows a simple scenario, such as spinning reel game, where wagers and wins are reported by the RGS
in a single command. The second diagram shows a more complex scenario, such as roulette, where wagers and
wins are reported across a series of commands. The third diagram shows an alternate scenario where the initial
buy-in for a game, such as multi-player poker, is transferred to the RGS and any remaining funds are
transferred back to the iGP when the player leaves the game. Other scenarios are possible for these types of
games.

6.2.1 Simple Games
This diagram illustrates the sequence of commands that might be used while a simple game, such as a spinning
reel game, is being played.

1. The player selects an amount to wager and then initiates game play.

2. The RGC synchronizes the game state with the iGC, indicating that a game is in progress.

3. The RGC reports to the RGS that a game started.

4. The RGS starts a new Game Cycle, assigning a new unique Game Cycle Identifier, and reports to the
iGP that a new game cycle has been started.

5. The iGP acknowledges that the new game cycle has been started.

6. The RGS determines the outcome, creating two Monetary Transactions (one for the wager and one
for the win). The RGS assigns a new unique Transaction Identifier to each Monetary Transaction.

7. The RGS sends the two Monetary Transactions to the iGP for approval.

8. The iGP approves the Monetary Transactions and replies to the RGS, including the new Player
Account balances in its response.

9. The RGS ends the Game Cycle and reports to the iGP that the game cycle has ended.

10. The iGP acknowledges that the game cycle has ended.

11. The RGS sends the game results to the RGC.

12. The RGC displays the results to the player and then synchronizes the Player Account balances and
game state with the iGC, indicating that the game has ended.

GSA Third-Party Game Interface V1.0 Chapter 6
Look Inside Game Play

Released: 2018/02/15 Page 127
© 2018 Gaming Standards Association (GSA)

Figure 6.1 Monetary Transactions for Simple Games

6.2.2 Complex Games
This diagram illustrates the sequence of commands that might be used when a more complex game, such as
roulette, is being played. Note that steps 10 through 16 could be repeated multiple times.

1. The player places an initial wager on the game.

2. The RGC synchronizes the game state with the iGC, indicating that a game is in progress.

3. The RGC reports to the RGS that a wager has been placed.

4. The RGS starts a new Game Cycle, assigning a new unique Game Cycle Identifier, and reports to the
iGP that a new Game Cycle has started.

5. The iGP acknowledges that the new Game Cycle has started.

6. The RGS creates a Monetary Transaction for the wager, assigning a new unique Transaction Identifier
to the Monetary Transaction.

7. The RGS sends the Monetary Transaction to the iGP for approval.

8. The iGP approves the Monetary Transaction and replies to the RGS, including the new Player
Account balances in its response.

9. The RGS sends a wager confirmation to the RGC.

10. The RGC confirms the wager to the player.

11. The player places an additional wager on the game.

12. The RGC reports to the RGS that an additional wager has been placed.

13. The RGS creates a Monetary Transaction for the wager, assigning a new unique Transaction Identifier
to the Monetary Transaction.

14. The RGS sends the Monetary Transaction to the iGP for approval.

15. The iGP approves the Monetary Transaction and replies to the RGS, including the new Player
Account balances in its response.

16. The RGS sends a wager confirmation to the RGC.

GSA Third-Party Game Interface V1.0 Chapter 6
Look Inside Game Play

Page 128 Released: 2018/02/15
© 2018 Gaming Standards Association (GSA)

17. The RGC confirms the wager to the player.

18. The RGS announces to the RGC that no more wagers will be accepted.

19. The RGS determines the outcome of the game and creates a Monetary Transaction for the win,
assigning a new unique Transaction Identifier to the Monetary Transaction.

20. The RGS sends the Monetary Transaction to the iGP for approval.

21. The iGP approves the Monetary Transaction and replies to the RGS, including the new Player
Account balances in its response.

22. The RGS ends the Game Cycle and reports to the iGP that the Game Cycle has ended.

23. The iGP acknowledges that the Game Cycle has ended.

24. The RGS sends the game outcome to the RGC.

25. The RGC displays the results to the player and then synchronizes the Player Account balances and
game state with the iGC, indicating that the game has ended.

Figure 6.2 Monetary Transactions for Complex Games

GSA Third-Party Game Interface V1.0 Chapter 6
Look Inside Game Play

Released: 2018/02/15 Page 129
© 2018 Gaming Standards Association (GSA)

6.2.3 Initial Buy-In Games
This diagram illustrates the sequence of commands that might be used when a game requires an initial buy-in
from the player. Any remaining funds are returned to the player’s account when the player cashes out and exits
the game. Note that some games might allow additional buy-in while the game is being played. In such cases,
there would be additional Monetary Transactions between the RGS and the iGP.

1. The player selects an initial buy-in amount and then starts the game.

2. The RGC synchronizes the game state with the iGC, indicating that the game is in progress.

3. The RGC reports the initial buy-in request to the RGS.

4. The RGS starts a new Game Cycle, assigning a new unique Game Cycle Identifier, and reports to the
iGP that a new Game Cycle has started.

5. The iGP acknowledges that a new Game Cycle has started.

6. The RGS creates a Monetary Transaction for the buy-in, assigning a new unique Transaction Identifier
to the Monetary Transaction.

7. The RGS sends the Monetary Transaction to the iGP for approval.

8. The iGP approves the Monetary Transaction and replies to the RGS, including the new Player
Account balances in its response.

9. The RGS sends a buy-in confirmation to the RGC.

10. The RGC confirms the initial buy-in to the player and then synchronizes the Player Account balances
with the iGC.

11. The player uses the RGC to play the game offered by the RGS.

12. The player makes a request to cash out.

13. The RGC reports to the RGS that a cash-out has been requested.

14. The RGS creates a Monetary Transaction for the cash-out, assigning a new unique Transaction
Identifier to the Monetary Transaction.

15. The RGS sends the Monetary Transaction to the iGP for approval.

16. The iGP approves the Monetary Transaction and replies to the RGS, including the new Player
Account balances in its response.

17. The RGS ends the Game Cycle and reports to the iGP that the Game Cycle has ended.

18. The iGP acknowledges that the Game Cycle has ended.

19. The RGS sends a cash-out confirmation to the RGC.

20. The RGC confirms the cash-out to the player and then synchronizes the Player Account balances and
game state with the iGC, indicating that the game has ended.

GSA Third-Party Game Interface V1.0 Chapter 6
Look Inside Game Play

Page 130 Released: 2018/02/15
© 2018 Gaming Standards Association (GSA)

Figure 6.3 Monetary Transactions for Initial Buy-In Games

6.2.3.1 Managing Temporary Player Accounts

In this scenario, the RGS will typically create a temporary Player Account to hold the buy-in. The temporary
Player Account could be on the RGS or it could be on a dedicated server that is responsible for holding the
player’s funds. In such cases, the RGS and the dedicated server could use the commands defined within this
specification to record the wagers and the wins from the game.

An alternate scenario is also possible. The iGP and iGC could use proprietary commands to set up a
temporary Player Account on the iGP to hold the player’s funds. In the Launch URL, the iGC would specify
the temporary Player Account rather than the primary Player Account. In this case, the RGS would use the
commands defined within this specification to record wagers and wins against the temporary Player Account
on the iGP. When the player exited the game, the iGP would move any remaining funds from the temporary
Player Account back to the primary Player Account.

GSA Third-Party Game Interface V1.0 Chapter 6
Look Inside Game Play

Released: 2018/02/15 Page 131
© 2018 Gaming Standards Association (GSA)

6.2.3.2 Multiple Game Cycles

In this scenario, a single game cycle was used to report both the buy-in and the cash-out for the game. This is
an easy way to tie together the buy-in, cash-out, and player tracking information related to the game played on
the RGS.

In certain circumstances, however, it might make more sense to report the activity related to the game across
multiple game cycles. For example, if the buy-in is held on the RGS for an indefinite period of time and, thus,
the player can return to the RGS repeatedly to play the game, it might make sense to report the buy-in in one
game cycle, the player tracking information for each visit to the RGS in other game cycles, and the cash-out in
a final game cycle.

However, this practice will have an effect on revenue reporting. When devising strategies for reporting the
activity related to initial buy-in games, implementers should carefully consider the effect on revenue reporting.
(See Chapter 12, Revenue Reporting for details).

GSA Third-Party Game Interface V1.0 Chapter 6
Look Inside Game Play

Page 132 Released: 2018/02/15
© 2018 Gaming Standards Association (GSA)

6.3 TPI_startGameCycle Command
This command is used by the RGS to request that a new Game Cycle be started for a Game Session. A
TPI_startGameCycleAck command is generated in response to the TPI_startGameCycle command. The
current value of the Player Account balances are reported by the iGP to the RGS in the
TPI_startGameCycleAck command.

In addition to other error codes that the iGP may report, the iGP may report the following error codes, as
appropriate, indicating that the requested action was not taken.

6.3.1 Duplicate Detection
A TPI_startGameCycle command is considered to be a duplicate if another TPI_startGameCycle command
containing the same Game Cycle Identifier (gameCycleId) had been previously reported to the iGP and
approved by the iGP. If a duplicate TPI_startGameCycle command is detected by the iGP, the iGP MUST
simply generate a logically equivalent TPI_startGameCycleAck response.

Table 6.1 TPI_startGameCycle Error Codes

Error Code Description

ERR022 Invalid Secure Token.

ERR023 Incorrect Player Account Identifier for Secure Token.

ERR024 Invalid Game Session Identifier.

ERR028 Transaction Failed (include additional information in errorMsg).

ERR031 Incorrect Player Account Identifier for Game Session.

ERR036 Incorrect Player Identifier for Secure Token.

ERR037 Incorrect Player Identifier for Game Session.

ERR041 End Game Session Immediately; Do Not Start New Game Session. 1

1 See Section 7.4, TPI_closeGameSession Command for more details.

ERR042 End Game Session Immediately; Start New Game Session. 1

Table 6.2 TPI_startGameCycle Properties

Property Restrictions Description

secureToken type: t_secureToken
use: required

Secure Token; current value of the Secure
Token.

playerId type: t_playerId
use: required

Player Identifier; value of the Player Identifier
received in the Game Launch URL.

accountId type: t_accountId
use: required

Player Account Identifier; value of the Player
Account Identifier received in the Game Launch
URL.

gameSessionId type: t_gameSessionId
use: required

Game Session Identifier; identifier assigned by
the RGS to the Game Session.

GSA Third-Party Game Interface V1.0 Chapter 6
Look Inside Game Play

Released: 2018/02/15 Page 133
© 2018 Gaming Standards Association (GSA)

6.3.2 TPI_startGameCycle Example
The following example demonstrates the construction of a TPI_startGameCycle command reporting that a
new Game Cycle has been started.

"command": "TPI_startGameCycle",
"data": {

"secureToken": "A1B2C3D4E5F60718",
"playerId": "00101977",
"accountId": "Z100187",
"gameSessionId": "ABCD1234EFGH5678",
"currencyCode": "USD",
"brandId": "myBrand",
"skinId": "mySkin",
"localeCode": "en-US",
"gameCycleId": "9876FEDC5432BAFE",
"gameGroupId": ""

}

currencyCode type: t_currencyCode
use: required

Currency Code; identifies the currency being
used for the Game Session.

brandId type: t_brandId
use: required

Brand Identifier; identifies the brand being used
for the Game Session.

skinId type: t_skinId
use: required

Skin Identifier; identifies the skin being used for
the Game Session.

localeCode type: t_localeCode
use: required

Locale Code; set to the locale (language)
currently selected by the player.

gameCycleId type: t_gameCycleId
use: required

Game Cycle Identifier; identifier assigned by the
RGS to the game cycle.

gameGroupId type: t_gameGroupId
use: optional
default: <empty>

Game Cycle Group Identifier; identifier assigned
by the RGS to a group of game cycles that are
dependent of the same decision.

Table 6.2 TPI_startGameCycle Properties

Property Restrictions Description

GSA Third-Party Game Interface V1.0 Chapter 6
Look Inside Game Play

Page 134 Released: 2018/02/15
© 2018 Gaming Standards Association (GSA)

6.4 TPI_startGameCycleAck Command
This command is used by the iGP to acknowledge that a new Game Cycle has been approved. The
TPI_startGameCycleAck command is generated in response to a TPI_startGameCycle command.

6.4.1 TPI_startGameCycleAck Example
The following example demonstrates the construction of a TPI_startGameCycleAck command confirming
that a new Game Cycle has been approved.

"command": "TPI_startGameCycleAck",
"data": {

"secureToken": "A1B2C3D4E5F60718",
"playerId": "00101977",
"accountId": "Z100187",
"gameSessionId": "ABCD1234EFGH5678",
"gameCycleId": "9876FEDC5432BAFE",
"accountBalance": {

"playerId": "00101977",
"accountId": "Z100187",
"currencyCode": "USD",
"messageArray": [

{
"accountMsg": "Welcome back!"

},
{

"accountMsg": "Good Luck!"
}

],

Table 6.3 TPI_startGameCycleAck Properties

Property Restrictions Description

secureToken type: t_secureToken
use: optional

Secure Token; when included, MUST be set to
the corresponding value from the request or a
new unique Secure Token assigned by the iGP;
when omitted, the value of the Secure Token is
unchanged.

playerId type: t_playerId
use: required

Player Identifier; MUST be set to the
corresponding value from the request.

accountId type: t_accountId
use: required

Player Account Identifier; MUST be set to the
corresponding value from the request.

gameSessionId type: t_gameSessionId
use: required

Game Session Identifier; MUST be set to the
corresponding value from the request.

gameCycleId type: t_gameCycleId
use: required

Game Cycle Identifier; MUST be set to the
corresponding value from the request.

accountBalance type: accountBalance
use: required

Contains account balance information. See
Section 5.9, TPI_playerBalance Command for
details.

GSA Third-Party Game Interface V1.0 Chapter 6
Look Inside Game Play

Released: 2018/02/15 Page 135
© 2018 Gaming Standards Association (GSA)

"availBalanceAmt": 50000,
"availFreeSpins": false,
"balanceArray": [

{
"balanceType": "cashable",
"balanceAmt": 50000

},
{

"balanceType": "cashable",
"balanceAmt": 2500,
"balanceStatus": "blocked",
"balanceRestrict": "Deposit Pending"

},
{

"balanceType": "nonCashable",
"balanceAmt": 10000,
"freeSpins": true,
"freeSpinId": "be97f52a-9b10-4013-997c-b6b98b6a82d0",
"freeSpinCnt": 100,
"freeSpinValue": 100

}
]

}
}

GSA Third-Party Game Interface V1.0 Chapter 6
Look Inside Game Play

Page 136 Released: 2018/02/15
© 2018 Gaming Standards Association (GSA)

6.5 TPI_moneyTransactions Command
This command is used by the RGS to request that a debit or credit be applied to a Player Account. The
command may also be used to report Special Transactions. The command does not indicate which Player
Account balance should be affected; it only includes the Player Account Identifier. The iGP is responsible for
determining which Player Account balance to debit or credit. A TPI_moneyTransactionsAck command is
generated in response to the TPI_moneyTransactions command. The specific Player Account balances that
were affected by the TPI_moneyTransactions command, as well as the remaining value of the Player Account
balanaces, are reported by the iGP in moneyTransDetail objects of the TPI_moneyTransactionsAck
command.

Each TPI_moneyTransactions command is idempotent. The iGP MUST approve or deny all Monetary
Transactions within the TPI_moneyTransactions command as a group; the iGP cannot selectively approve or
deny individual Monetary Transactions within a TPI_moneyTransactions command.

The RGS SHOULD include a description of the transaction in the transDesc property. The description can
be very helpful to operators when they are trying to audit game play and resolve disputes with players. The
RGS has broad discretion in determining what text to include in the description. However, the RGS SHOULD
NOT leave the description empty.

In addition to other error codes that the iGP may report, the iGP may report the following error codes, as
appropriate, indicating that the requested action was not taken.

Table 6.4 TPI_moneyTransactions Error Codes

Error Code Description

ERR022 Invalid Secure Token.

ERR023 Incorrect Player Account Identifier for Secure Token.

ERR024 Invalid Game Session Identifier.

ERR025 Insufficient Funds.

ERR026 Player Account Locked.

ERR027 Wager Limit Exceeded.

ERR028 Transaction Failed (include additional information in errorMsg).

ERR031 Incorrect Player Account Identifier for Game Session.

ERR032 Incorrect Game Session Identifier for Game Cycle.

ERR034 Game Cycle Finished.

ERR036 Incorrect Player Identifier for Secure Token.

ERR037 Incorrect Player Identifier for Game Session.

ERR041 End Game Session Immediately; Do Not Start New Game Session. 1

1 See Section 7.4, TPI_closeGameSession Command for more details.

ERR042 End Game Session Immediately; Start New Game Session. 1

GSA Third-Party Game Interface V1.0 Chapter 6
Look Inside Game Play

Released: 2018/02/15 Page 137
© 2018 Gaming Standards Association (GSA)

After the RGS has reported that a Game Cycle has been finished, the RGS MUST NOT post or cancel any
additional Monetary Transactions for the Game Cycle. If the RGS makes such a request, the iGP MUST deny
the request and include error code ERR034 Game Cycle Finished in its response.

6.5.1 Duplicate Detection
A moneyTrans object is considered to be a duplicate if another moneyTrans object containing the same
Transaction Identifier (transId) had been previously approved by the iGP. If a duplicate moneyTrans object is
detected by the iGP, the iGP MUST NOT debit/credit the Player Account a second time; instead, the iGP
MUST simply generate a response that is logically equivalent to the response that was generated when the
moneyTrans object was first approved; the iGP MUST include the same Reference Identifier (referenceId)
and Transaction Day (transDay) in the response.

Table 6.5 TPI_moneyTransactions Properties

Property Restrictions Description

secureToken type: t_secureToken
use: optional
default: <empty>

Secure Token; current value of the Secure Token.

playerId type: t_playerId
use: required

Player Identifier; value of the Player Identifier received
in the Game Launch URL.

accountId type: t_accountId
use: required

Player Account Identifier; value of the Player Account
Identifier received in the Game Launch URL.

gameSessionId type: t_gameSessionId
use: required

Game Session Identifier; identifier assigned by the RGS
to the Game Session.

currencyCode type: t_currencyCode
use: required

Currency Code; identifies the currency being used for
the Game Session.

brandId type:t_brandId
use: required

Brand Identifier; identifies the brand being used for the
Game Session.

skinId type: t_skinId
use: required

Skin Identifier; identifies the skin being used for the
Game Session.

localeCode type: t_localeCode
use: required

Locale Code; set to the locale (language) currently
selected by the player.

gameCycleId type: t_gameCycleId
use: required

Game Cycle Identifier; identifier assigned by the RGS
to the game cycle.

gameCycleExc type: t_gameCycleCodes
use: optional
default: 0

Game Cycle Exception Code.

gameGroupId type: t_gameGroupId
use: optional
default: <empty>

Game Cycle Group Identifier; identifier assigned by the
RGS to a group of game cycles that are dependent of
the same decision.

Monetary Transactions

GSA Third-Party Game Interface V1.0 Chapter 6
Look Inside Game Play

Page 138 Released: 2018/02/15
© 2018 Gaming Standards Association (GSA)

moneyTransArray type: array
use: required
minItems: 0
maxItems: ∞

An arry of moneyTrans objects which contain
individual debits or credits to the player's account. See
Table 6.6, moneyTrans Properties for details.

Table 6.6 moneyTrans Properties

Property Restrictions Description

transSeq type: numeric
use: required
minimum: 1

Transaction Sequence; indicates the sequence in which
the transactions should be applied to the player's
account; MUST start at 1 and increase by 1 as a strictly
increasing series.

transId type: t_transId
use: required

Transaction Identifier; assigned by the RGS.

transAmt type: t_money
use: required

Transaction Amount; value of the transaction.

transType type: t_transTypes
use: required

Transaction Type; indicates whether the transaction is a
debit (subtraction) to the player's account, a credit
(addition) to the player's account, or a Special
Transaction.

transCategory type: t_transCategories
use: required

Transaction Category; identifies the general category
for the transaction; for example, wager, win,
adjustment, etc.

freeSpinId type: t_freeSpinId
use: optional
default: <empty>

Free Spin Identifier; when a free spin is being reported,
identifies the free-spin configuration used for the free
spin.

pjsId type: t_pjsId
use: optional
default: <empty>

Progressive Jackpot Service Identifier; when a
progressive win is being reported, identifies the
progressive service that made the award.

controllerId type: t_controllerId
use: optional
default: 0

Jackpot Controller Identifier; when a progressive win is
being reported, identifies the jackpot controller
associated with the award.

levelId type: t_levelId
use: optional
default: 0

Jackpot Level Identifier; when a progressive win is
being reported, identifies the jackpot level associated
with the award.

pjsDay type: t_date
use: optional
default: <empty>

Jackpot Day; gaming day on which the transaction was
approved by the PJS.

transDesc type: t_textMessage
use: optional
default <empty>

Description of the transaction.

Table 6.5 TPI_moneyTransactions Properties

Property Restrictions Description

GSA Third-Party Game Interface V1.0 Chapter 6
Look Inside Game Play

Released: 2018/02/15 Page 139
© 2018 Gaming Standards Association (GSA)

6.5.2 TPI_moneyTransactions Examples
The following example demonstrates the construction of a TPI_moneyTransactions command reporting that
an initial wager has been made.

"command": "TPI_moneyTransactions",
"data": {

"secureToken": "A1B2C3D4E5F60718",
"playerId": "00101977",
"accountId": "Z100187",
"gameSessionId": "ABCD1234EFGH5678",
"currencyCode": "USD",
"brandId": "myBrand",
"skinId": "mySkin",
"localeCode": "en-US",
"gameCycleId": "9876FEDC5432BAFE",
"gameCycleExc": 0,
"gameGroupId": "",
"moneyTransArray": [

{
"transSeq": 1,
"transId": "12345601",
"transAmt": 100,
"transType": "debit",
"transCategory": "wager",
"transDesc": "1 Line 1 Credit"

}
]

}

The following example demonstrates the construction of a TPI_moneyTransactions command reporting the
results of the game cycle.

"command": "TPI_moneyTransactions",
"data": {

"secureToken": "A1B2C3D4E5F60718",
"playerId": "00101977",
"accountId": "Z100187",
"gameSessionId": "ABCD1234EFGH5678",
"currencyCode": "USD",
"brandId": "myBrand",
"skinId": "mySkin",
"localeCode": "en-US",
"gameCycleId": "9876FEDC5432BAFE",
"gameCycleExc": 0,
"gameGroupId": "",
"moneyTransArray": [

{
"transSeq": 1,
"transId": "12345602",
"transAmt": 200,
"transType": "credit",
"transCategory": "win",
"transDesc": "Cherry|Cherry|Cherry"

}
]

}

GSA Third-Party Game Interface V1.0 Chapter 6
Look Inside Game Play

Page 140 Released: 2018/02/15
© 2018 Gaming Standards Association (GSA)

The following example demonstrates the construction of a TPI_moneyTransactions command reporting the
results of the game cycle as a reconciliation command indicating that the game cycle was auto-completed. Note
that the Secure Token is not being reported and that the gameCycleExc property has been set to 1.

"command": "TPI_moneyTransactions",
"data": {

"playerId": "00101977",
"accountId": "Z100187",
"gameSessionId": "ABCD1234EFGH5678",
"currencyCode": "USD",
"brandId": "myBrand",
"skinId": "mySkin",
"localeCode": "en-US",
"gameCycleId": "9876FEDC5432BAFE",
"gameCycleExc": 1,
"gameGroupId": "",
"moneyTransArray": [

{
"transSeq": 1,
"transId": "12345602",
"transAmt": 200,
"transType": "credit",
"transCategory": "win",
"transDesc": "Cherry|Cherry|Cherry"

}
]

}

GSA Third-Party Game Interface V1.0 Chapter 6
Look Inside Game Play

Released: 2018/02/15 Page 141
© 2018 Gaming Standards Association (GSA)

6.6 TPI_moneyTransactionsAck Command
This command is used by the iGP to approve or deny a set of Monetary Transactions that were received from
the RGS. The Monetary Transactions are considered approved if the error code of the response is omitted or
set to the <empty> value. The Monetary Transactions are considered denied if the error code of the response
is set to a value other than the <empty> value. The TPI_moneyTransactionsAck command is generated in
response to a TPI_moneyTransactions command.

Table 6.7 TPI_moneyTransactionsAck Properties

Property Restrictions Description

secureToken type: t_secureToken
use: optional

Secure Token; when included, MUST be set to
the corresponding value from the request or a
new unique Secure Token assigned by the iGP;
when omitted, the value of the Secure Token is
unchanged.

playerId type: t_playerId
use: required

Player Identifier; MUST be set to the
corresponding value from the request.

accountId type: t_accountId
use: required

Player Account Identifier; MUST be set to the
corresponding value from the request.

gameSessionId type: t_gameSessionId
use: required

Game Session Identifier; MUST be set to the
corresponding value from the request.

gameCycleId type: t_gameCycleId
use: required

Game Cycle Identifier; MUST be set to the
corresponding value from the request.

moneyAckArray type: array
use: required
minItems: 0
maxItems: ∞

An array of moneyAck objects which contain
acknowledgements of individual debits or
credits to the player's account. See Table 6.8,
moneyAck Properties for details.

accountBalance type: accountBalance
use: required

Contains account balance information. See
Section 5.9, TPI_playerBalance Command for
details.

Table 6.8 moneyAck Properties

Property Restrictions Description

transSeq type: numeric
use: required
minimum: 1

Transaction Sequence; MUST be set to the
corresponding value from the request.

transId type: t_transId
use: required

Transaction Identifier; MUST be set to the
corresponding value from the request.

transAmt type: t_money
use: required

Transaction Amount; MUST be set to the
corresponding value from the request.

transType type: t_transTypes
use: required

Transaction Type; MUST be set to the
corresponding value from the request.

GSA Third-Party Game Interface V1.0 Chapter 6
Look Inside Game Play

Page 142 Released: 2018/02/15
© 2018 Gaming Standards Association (GSA)

transCategory type: t_transCategories
use: required

Transaction Category; MUST be set to the
corresponding value from the request.

freeSpinId type: t_freeSpinId
use: optional
default: <empty>

Free Spin Identifier; when a free spin is being
reported, identifies the free-spin configuration
used for the free spin.

pjsId type: t_pjsId
use: optional
default: <empty>

Progressive Jackpot Service Identifier; when a
progressive win is being reported, identifies
the progressive service that made the award.

controllerId type: t_controllerId
use: optional
default: 0

Jackpot Controller Identifier; when a
progressive win is being reported, identifies
the jackpot controller associated with the
award.

levelId type: t_levelId
use: optional
default: 0

Jackpot Level Identifier; when a progressive
win is being reported, identifies the jackpot
level associated with the award.

pjsDay type: t_date
use: optional
default: <empty>

Jackpot Day; gaming day on which the
transaction was approved by the PJS.

transDesc type: t_textMessage
use: optional
default <empty>

Description of the transaction; MUST be set
to the corresponding value from the request.

referenceId type: t_referenceId
use: required

Reference Identifier; value assigned by the iGP
to the Monetary Transaction when the
Monetary Transaction was approved.

transDay type: t_date
use: required

Transaction Day; gaming day on which the
transaction was approved by the iGP.

moneyDetailArray type: array
use: required
minItems: 0
maxItems: ∞

An array of moneyDetail objects which
identify account balances that were affected by
the transaction and the remaining funds after
the transaction was completed. See Table 6.9,
moneyDetail Properties for details.

Table 6.9 moneyDetail Properties

Property Restrictions Description

balanceType type: t_balanceTypes
use: required

Balance identifier; assigned by the iGP; for
example, cashable.

balanceSeq type: t_balanceSeq
use: optional
default: 0

Balance Sequence; assigned by the iGP; used
to identify the sequence of transactions against
an account balance.

Table 6.8 moneyAck Properties

Property Restrictions Description

GSA Third-Party Game Interface V1.0 Chapter 6
Look Inside Game Play

Released: 2018/02/15 Page 143
© 2018 Gaming Standards Association (GSA)

6.6.1 TPI_moneyTransactionsAck Examples
The following example demonstrates the construction of a TPI_moneyTransactionsAck command confirming
that an initial wager has been made.

"command": "TPI_moneyTransactionsAck",
"data": {

"secureToken": "A1B2C3D4E5F60718",
"playerId": "00101977",
"accountId": "Z100187",
"gameSessionId": "ABCD1234EFGH5678",
"gameCycleId": "9876FEDC5432BAFE",
"moneyAckArray": [

{
"transSeq": 1,
"transId": "12345601",
"transAmt": 100,
"transType": "debit",
"transCategory": "wager",
"transDesc": "1 Line 1 Credit",
"referenceId": "98765401",
"transDay": "2014-10-26",
"moneyDetailArray": [

{
"balanceType": "cashable",
"balanceSeq": 251,
"detailAmt": 100,
"detailType": "debit",
"balanceAmt": 49900

}
]

}
],
"accountBalance": {

"playerId": "00101977",
"accountId": "Z100187",
"currencyCode": "USD",
"messageArray": [

{
"accountMsg": "Welcome back!"

},
{

"accountMsg": "Good Luck!"
}

],
"availBalanceAmt": 49900,
"availFreeSpins": false,

detailAmt type: t_money
use: required

Detail Transaction Amount.

detailType type: t_transTypes
use: required

Detail Transaction Type; debit or credit.

balanceAmt type: t_money
use: required

Remaining balance after the monetary
transaction.

Table 6.9 moneyDetail Properties

Property Restrictions Description

GSA Third-Party Game Interface V1.0 Chapter 6
Look Inside Game Play

Page 144 Released: 2018/02/15
© 2018 Gaming Standards Association (GSA)

"balanceArray": [
{

"balanceType": "cashable",
"balanceAmt": 49900

},
{

"balanceType": "cashable",
"balanceAmt": 2500,
"balanceStatus": "blocked",
"balanceRestrict": "Deposit Pending"

},
{

"balanceType": "nonCashable",
"balanceAmt": 10000,
"freeSpins": true,
"freeSpinId": "be97f52a-9b10-4013-997c-b6b98b6a82d0",
"freeSpinCnt": 100,
"freeSpinValue": 100

}
]

}
}

The following example demonstrates the construction of a TPI_moneyTransactionsAck command confirming
the results of the game cycle.

"command": "TPI_moneyTransactionsAck",
"data": {

"secureToken": "A1B2C3D4E5F60718",
"playerId": "00101977",
"accountId": "Z100187",
"gameSessionId": "ABCD1234EFGH5678",
"gameCycleId": "9876FEDC5432BAFE",
"moneyAckArray": [

{
"transSeq": 1,
"transId": "12345602",
"transAmt": 200,
"transType": "credit",
"transCategory": "win",
"transDesc": "Cherry|Cherry|Cherry",
"referenceId": "98765402",
"transDay": "2014-10-26",
"moneyDetailArray": [

{
"balanceType": "cashable",
"balanceSeq": 252,
"detailAmt": 200,
"detailType": "credit",
"balanceAmt": 50100

}
]

}
],
"accountBalance": {

"playerId": "00101977",
"accountId": "Z100187",
"currencyCode": "USD",
"messageArray": [

{

GSA Third-Party Game Interface V1.0 Chapter 6
Look Inside Game Play

Released: 2018/02/15 Page 145
© 2018 Gaming Standards Association (GSA)

"accountMsg": "Welcome back!"
},
{

"accountMsg": "Good Luck!"
}

],
"availBalanceAmt": 50100,
"availFreeSpins": false,
"balanceArray": [

{
"balanceType": "cashable",
"balanceAmt": 50100

},
{

"balanceType": "cashable",
"balanceAmt": 2500,
"balanceStatus": "blocked",
"balanceRestrict": "Deposit Pending"

},
{

"balanceType": "nonCashable",
"balanceAmt": 10000,
"freeSpins": true,
"freeSpinId": "be97f52a-9b10-4013-997c-b6b98b6a82d0",
"freeSpinCnt": 100,
"freeSpinValue": 100

}
]

}
}

GSA Third-Party Game Interface V1.0 Chapter 6
Look Inside Game Play

Page 146 Released: 2018/02/15
© 2018 Gaming Standards Association (GSA)

6.7 TPI_cancelTransactions Command
This command is used by the RGS to cancel (void) one or more Monetary Transactions that were previously
approved by the iGP. The Monetary Transactions MUST be for the same amount and of the same type (debit
or credit) as presented in the original TPI_moneyTransactions command. A TPI_cancelTransactionsAck
command is generated in response to the TPI_cancelTransactions command. The specific Player Account
balances that were affected by the TPI_cancelTransactions command, as well as the remaining value of the
Player Account balances, are reported by the iGP in cancelDetail objects of the
TPI_cancelTransactionsAck command.

Each TPI_cancelTransactions command is idempotent. The iGP MUST void all Monetary Transactions
within the TPI_cancelTransactions command as a group; the iGP cannot selectively void individual
Monetary Transactions within a TPI_cancelTransactions command.

In addition to other error codes that the iGP may report, the iGP may report the following error codes, as
appropriate, indicating that the requested action was not taken.

After the RGS has reported that a Game Cycle has been finished, the RGS MUST NOT post or cancel any
additional Monetary Transactions for the Game Cycle. If the RGS makes such a request, the iGP MUST deny
the request and include error code ERR034 Game Cycle Finished in its response.

Table 6.10 TPI_cancelTransactions Error Codes

Error Code Description

ERR022 Invalid Secure Token.

ERR023 Incorrect Player Account Identifier for Secure Token.

ERR024 Invalid Game Session Identifier.

ERR025 Insufficient Funds.

ERR026 Player Account Locked.

ERR028 Transaction Failed (include additional information in errorMsg).

ERR029 Invalid Game Cycle Identifier.

ERR031 Incorrect Player Account Identifier for Game Session.

ERR032 Incorrect Game Session Identifier for Game Cycle.

ERR033 Invalid Transaction Identifier for Game Cycle.

ERR034 Game Cycle Finished.

ERR036 Incorrect Player Identifier for Secure Token.

ERR037 Incorrect Player Identifier for Game Session.

ERR041 End Game Session Immediately; Do Not Start New Game Session. 1

1 See Section 7.4, TPI_closeGameSession Command for more details.

ERR042 End Game Session Immediately; Start New Game Session. 1

GSA Third-Party Game Interface V1.0 Chapter 6
Look Inside Game Play

Released: 2018/02/15 Page 147
© 2018 Gaming Standards Association (GSA)

6.7.1 Duplicate Detection
A cancelTrans object is considered to be a duplicate if a cancelTrans object containing the same Transaction
Identifier (transId) had been previously cancelled by the iGP. If a duplicate cancelTrans object is detected by
the iGP, the iGP MUST NOT reverse the Monetary Transaction and update the Player Account a second time;
instead, the iGP MUST simply generate a response that is logically equivalent to the response that was
generated when the cancelTrans object was first approved; the iGP MUST include the same Cancellation
Identifier (cancelId) and Cancellation Day (cancelDay) in the response.

Table 6.11 TPI_cancelTransactions Properties

Property Restrictions Description

secureToken type: t_secureToken
use: optional
default: <empty>

Secure Token; current value of the Secure Token.

playerId type: t_playerId
use: required

Player Identifier; value of the Player Identifier
received in the Game Launch URL.

accountId type: t_accountId
use: required

Player Account Identifier; value of the Player
Account Identifier received in the Game Launch
URL.

gameSessionId type: t_gameSessionId
use: required

Game Session Identifier; identifier assigned by
the RGS to the Game Session.

currencyCode type: t_currencyCode
use: required

Currency Code; identifies the currency being
used for the Game Session.

brandId type: t_brandId
use: required

Brand Identifier; identifies the brand being used
for the Game Session.

skinId type: t_skinId
use: required

Skin Identifier; identifies the skin being used for
the Game Session.

localeCode type: t_localeCode
use: required

Locale Code; set to the locale (language)
currently selected by the player.

gameCycleId type: t_gameCycleId
use: required

Game Cycle Identifier; identifier assigned by the
RGS to the game cycle.

gameCycleExc type: t_gameCycleCodes
use: optional
default: 0

Game Cycle Exception Code.

gameGroupId type: t_gameGroupId
use: optional
default: <empty>

Game Cycle Group Identifier; identifier assigned
by the RGS to a group of game cycles that are
dependent of the same decision.

Cancelled Transactions

cancelTransArray type: array
use: required
minItems: 0
maxItems: ∞

An array of cancelTrans objects which contain
individual debits or credits to the player's
account. See Table 6.12, cancelTrans Properties
for details.

GSA Third-Party Game Interface V1.0 Chapter 6
Look Inside Game Play

Page 148 Released: 2018/02/15
© 2018 Gaming Standards Association (GSA)

Table 6.12 cancelTrans Properties

Property Restrictions Description

transSeq type: numeric
use: required
minimum: 1

Transaction Sequence; indicates the sequence
in which the transactions should be applied to
the player's account; MUST start at 1 and
increase by 1 as a strictly increasing series.

transId type: t_transId
use: required

Transaction Identifier; assigned by the RGS.

transAmt type: t_money
use: required

Transaction Amount; value of the transaction.

transType type: t_transTypes
use: required

Transaction Type; indicates whether the
transaction is a debit (subtraction) to the
player's account, a credit (addition) to the
player's account, or a Special Transaction.

transCategory type: t_transCategories
use: required

Transaction Category; identifies the general
category for the transaction; for example,
wager, win, adjustment, etc.

freeSpinId type: t_freeSpinId
use: optional
default: <empty>

Free Spin Identifier; when a free spin is being
reported, identifies the free-spin configuration
used for the free spin.

pjsId type: t_pjsId
use: optional
default: <empty>

Progressive Jackpot Service Identifier; when a
progressive win is being reported, identifies
the progressive service that made the award.

controllerId type: t_controllerId
use: optional
default: 0

Jackpot Controller Identifier; when a
progressive win is being reported, identifies
the jackpot controller associated with the
award.

levelId type: t_levelId
use: optional
default: 0

Jackpot Level Identifier; when a progressive
win is being reported, identifies the jackpot
level associated with the award.

pjsDay type: t_date
use: optional
default: <empty>

Jackpot Day; gaming day on which the
transaction was approved by the PJS.

transDesc type: t_textMessage
use: optional
default <empty>

Description of the transaction.

referenceId type: t_referenceId
use: required

Reference Identifier; value assigned by the iGP
to the Monetary Transaction when the
Monetary Transaction was approved.

transDay type: t_date
use: required

Transaction Day; value assigned by the iGP to
the Monetary Transaction when the Monetary
Transaction was approved.

GSA Third-Party Game Interface V1.0 Chapter 6
Look Inside Game Play

Released: 2018/02/15 Page 149
© 2018 Gaming Standards Association (GSA)

6.7.2 TPI_cancelTransactions Example
The following example demonstrates the construction of a TPI_cancelTransactions command requesting
that an initial wager be cancelled.

"command": "TPI_cancelTransactions",
"data": {

"secureToken": "A1B2C3D4E5F60718",
"playerId": "00101977",
"accountId": "Z100187",
"gameSessionId": "ABCD1234EFGH5678",
"currencyCode": "USD",
"brandId": "myBrand",
"skinId": "mySkin",
"localeCode": "en-US",
"gameCycleId": "9876FEDC5432BAFE",
"gameCycleExc": 0,
"gameGroupId": "",
"cancelTransArray": [

{
"transSeq": 1,
"transId": "12345601",
"transAmt": 100,
"transType": "debit",
"transCategory": "wager",
"transDesc": "1 Line 1 Credit",
"referenceId": "98765402",
"transDay": "2014-10-26"

}
]

}

GSA Third-Party Game Interface V1.0 Chapter 6
Look Inside Game Play

Page 150 Released: 2018/02/15
© 2018 Gaming Standards Association (GSA)

6.8 TPI_cancelGameCycle Command
This command is used by the RGS to cancel (void) all Monetary Transactions associated with a specific Game
Cycle that were previously approved by the iGP. The RGS does not have to present the previously approved
Monetary Transactions in this command. A TPI_cancelTransactionsAck command is generated in response
to the TPI_cancelGameCycle command. The TPI_cancelTransactionsAck response MUST include a
complete list of all Monetary Transactions that were cancelled at any time for the Game Cycle.

Each TPI_cancelGameCycle command is idempotent. The iGP MUST cancel all Monetary Transactions for
the Game Cycle as a group or not cancel any Monetary Transactions for the Game Cycle; the iGP cannot
selectively cancel individual Monetary Transactions for the Game Cycle.

In addition to other error codes that the iGP may report, the iGP may report the following error codes, as
appropriate, indicating that the requested action was not taken.

After the RGS has reported that a Game Cycle has been finished, the RGS MUST NOT post or cancel any
additional Monetary Transactions for the Game Cycle. If the RGS makes such a request, the iGP MUST deny
the request and include error code ERR034 Game Cycle Finished in its response.

6.8.1 Duplicate Detection
The Game Cycle specified in the TPI_cancelGameCycle command may include one or more Monetary
Transactions that were previously cancelled by the iGP. The iGP MUST NOT cancel any such Monetary

Table 6.13 TPI_cancelGameCycle Error Codes

Error Code Description

ERR022 Invalid Secure Token.

ERR023 Incorrect Player Account Identifier for Secure Token.

ERR024 Invalid Game Session Identifier.

ERR025 Insufficient Funds.

ERR026 Player Account Locked.

ERR028 Transaction Failed (include additional information in errorMsg).

ERR029 Invalid Game Cycle Identifier.

ERR031 Incorrect Player Account Identifier for Game Session.

ERR032 Incorrect Game Session Identifier for Game Cycle.

ERR034 Game Cycle Finished.

ERR036 Incorrect Player Identifier for Secure Token.

ERR037 Incorrect Player Identifier for Game Session.

ERR041 End Game Session Immediately; Do Not Start New Game Session. 1

1 See Section 7.4, TPI_closeGameSession Command for more details.

ERR042 End Game Session Immediately; Start New Game Session. 1

GSA Third-Party Game Interface V1.0 Chapter 6
Look Inside Game Play

Released: 2018/02/15 Page 151
© 2018 Gaming Standards Association (GSA)

Transactions a second time. Instead, the iGP MUST simply include logically equivalent responses for the
previously cancelled Monetary Transactions; the iGP MUST include the same Cancellation Identifiers
(cancelId) and Cancellation Days (cancelDay) that were reported when the Monetary Transactions were first
cancelled.

6.8.2 TPI_cancelGameCycle Example
The following example demonstrates the construction of a TPI_cancelGameCycle command requesting that
all Monetary Transactions associated with the game cycle be cancelled.

"command": "TPI_cancelGamecycle",
"data": {

"secureToken": "A1B2C3D4E5F60718",
"playerId": "00101977",

Table 6.14 TPI_cancelGameCycle Properties

Property Restrictions Description

secureToken type: t_secureToken
use: optional
default: <empty>

Secure Token; current value of the Secure Token.

playerId type: t_playerId
use: required

Player Identifier; value of the Player Identifier
received in the Game Launch URL.

accountId type: t_accountId
use: required

Player Account Identifier; value of the Player
Account Identifier received in the Game Launch
URL.

gameSessionId type: t_gameSessionId
use: required

Game Session Identifier; identifier assigned by
the RGS to the Game Session.

currencyCode type: t_currencyCode
use: required

Currency Code; identifies the currency being
used for the Game Session.

brandId type: t_brandId
use: required

Brand Identifier; identifies the brand being used
for the Game Session.

skinId type: t_skinId
use: required

Skin Identifier; identifies the skin being used for
the Game Session.

localeCode type: t_localeCode
use: required

Locale Code; set to the locale (language)
currently selected by the player.

gameCycleId type: t_gameCycleId
use: required

Game Cycle Identifier; identifier assigned by the
RGS to the game cycle.

gameCycleExc type: t_gameCycleCodes
use: optional
default: 0

Game Cycle Exception Code.

gameGroupId type: t_gameGroupId
use: optional
default: <empty>

Game Cycle Group Identifier; identifier assigned
by the RGS to a group of game cycles that are
dependent of the same decision.

GSA Third-Party Game Interface V1.0 Chapter 6
Look Inside Game Play

Page 152 Released: 2018/02/15
© 2018 Gaming Standards Association (GSA)

"accountId": "Z100187",
"gameSessionId": "ABCD1234EFGH5678",
"currencyCode": "USD",
"brandId": "myBrand",
"skinId": "mySkin",
"localeCode": "en-US",
"gameCycleId": "9876FEDC5432BAFE",
"gameCycleExc": 0,
"gameGroupId": ""

}

GSA Third-Party Game Interface V1.0 Chapter 6
Look Inside Game Play

Released: 2018/02/15 Page 153
© 2018 Gaming Standards Association (GSA)

6.9 TPI_cancelTransactionsAck Command
This command is used by the iGP to approve or deny the cancellation of a set of Monetary Transactions that
were previously approved by the iGP. The cancellation is considered approved if the error code of the
response is omitted or set to the <empty> value. The cancellation is considered denied if the error code of the
response is set to a value other than the <empty> value. The TPI_cancelTransactionsAck command is
generated in response to the TPI_cancelTransactions and TPI_cancelGameCycle commands.

Table 6.15 TPI_cancelTransactionsAck Properties

Property Restrictions Description

secureToken type: t_secureToken
use: optional

Secure Token; when included, MUST be set to the
corresponding value from the request or a new
unique Secure Token assigned by the iGP; when
omitted, the value of the Secure Token is unchanged.

playerId type: t_playerId
use: required

Player Identifier; MUST be set to the corresponding
value from the request.

accountId type: t_accountId
use: required

Player Account Identifier; MUST be set to the
corresponding value from the request.

gameSessionId type: t_gameSessionId
use: required

Game Session Identifier; MUST be set to the
corresponding value from the request.

gameCycleId type: t_gameCycleId
use: required

Game Cycle Identifier; MUST be set to the
corresponding value from the request.

cancelAckArray type: array
use: required
minItems: 0
maxItems: ∞

An array of cancelAck objects which contain
acknowledgements of individual debits or credits to
the player's account. See Table 6.16, cancelAck
Properties for details.

accountBalance type: accountBalance
use: required

Contains account balance information. See Section
5.9, TPI_playerBalance Command for details.

Table 6.16 cancelAck Properties

Property Restrictions Description

transSeq type: numeric
use: required
minimum: 1

Transaction Sequence; in the case of
cancelTransactions, MUST be set to the
corresponding value from the request; in the case of
cancelGameCycle, indicates the sequence in which
the transactions were applied to the player's account;
MUST start at 1 and increase by 1 as a strictly
increasing series.

transId type: t_transId
use: required

Transaction Identifier; in the case of
cancelTransactions, MUST be set to the
corresponding value from the request; in the case of
cancelGameCycle, MUST be set to the value from
the Monetary Transaction.

GSA Third-Party Game Interface V1.0 Chapter 6
Look Inside Game Play

Page 154 Released: 2018/02/15
© 2018 Gaming Standards Association (GSA)

transAmt type: t_money
use: required

Transaction Amount; in the case of
cancelTransactions, MUST be set to the
corresponding value from the request; in the case of
cancelGameCycle, MUST be set to the value from
the Monetary Transaction.

transType type: t_transTypes
use: required

Transaction Type; in the case of
cancelTransactions, MUST be set to the
corresponding value from the request; in the case of
cancelGameCycle, MUST be set to the value from
the Monetary Transaction.

transCategory type: t_transCategories
use: required

Transaction Category; in the case of
cancelTransactions, MUST be set to the
corresponding value from the request; in the case of
cancelGameCycle, MUST be set to the value from
the Monetary Transaction.

freeSpinId type: t_freeSpinId
use: optional
default: <empty>

Free Spin Identifier; when a free spin is being
reported, identifies the free-spin configuration used
for the free spin.

pjsId type: t_pjsId
use: optional
default: <empty>

Progressive Jackpot Service; in the case of
cancelTransactions, MUST be set to the
corresponding value from the request; in the case of
cancelGameCycle, MUST be set to the value from
the Monetary Transaction.

controllerId type: t_controllerId
use: optional
default: 0

Jackpot Controller Identifier; in the case of
cancelTransactions, MUST be set to the
corresponding value from the request; in the case of
cancelGameCycle, MUST be set to the value from
the Monetary Transaction.

levelId type: t_levelId
use: optional
default: 0

Jackpot Level Identifier; in the case of
cancelTransactions, MUST be set to the
corresponding value from the request; in the case of
cancelGameCycle, MUST be set to the value from
the Monetary Transaction.

pjsDay type: t_date
use: optional
default: <empty>

Jackpot Day; in the case of cancelTransactions,
MUST be set to the corresponding value from the
request; in the case of cancelGameCycle, MUST be
set to the value from the Monetary Transaction.

transDesc type: t_textMessage
use: optional
default <empty>

Description of the transaction; in the case of
cancelTransactions, MUST be set to the
corresponding value from the request; in the case of
cancelGameCycle, MUST be set to the value from
the Monetary Transaction.

Table 6.16 cancelAck Properties

Property Restrictions Description

GSA Third-Party Game Interface V1.0 Chapter 6
Look Inside Game Play

Released: 2018/02/15 Page 155
© 2018 Gaming Standards Association (GSA)

6.9.1 TPI_cancelTransactionsAck Example
The following example demonstrates the construction of a TPI_cancelTransactionsAck command
confirming that an initial wager has been canceled.

"command": "TPI_cancelTransactionsAck",

referenceId type: t_referenceId
use: required

Reference Identifier; in the case of
cancelTransactions, MUST be set to the
corresponding value from the request; in the case of
cancelGameCycle, MUST be set to the value
assigned by the iGP to the Monetary Transaction.

transDay type: t_date
use: required

Transaction Day; in the case of
cancelTransactions, MUST be set to the
corresponding value from the request; in the case of
cancelGameCycle, MUST be set to the value
assigned by the iGP to the Monetary Transaction.

cancelId type: t_referenceId
use: required

Cancellation Identifier; value assigned by the iGP to
the Monetary Transaction when the Monetary
Transaction was cancelled.

cancelDay type: t_date
use: required

Cancellation Day; gaming day on which the
Monetary Transaction was cancelled by the iGP.

cancelDetailArray type: array
use: required
minItems: 0
maxItems: ∞

An array of cancelDetail objects which identify
account balances that were affected by the
cancellation and the remaining value after the
cancellation was completed. See Table 6.17,
cancelDetail Properties for details.

Table 6.17 cancelDetail Properties

Property Restrictions Description

balanceType type: t_balanceTypes
use: required

Balance identifier; assigned by the iGP; for example,
cashable.

balanceSeq type: t_balanceSeq
use: optional
default: 0

Balance Sequence; assigned by the iGP; used to
identify the sequence of transactions against an
account balance.

detailAmt type: t_money
use: required

Detail Transaction Amount.

detailType type: t_transTypes
use: required

Detail Transaction Type; debit or credit.

balanceAmt type: t_money
use: required

Remaining balance after the cancellation of the
monetary transaction.

Table 6.16 cancelAck Properties

Property Restrictions Description

GSA Third-Party Game Interface V1.0 Chapter 6
Look Inside Game Play

Page 156 Released: 2018/02/15
© 2018 Gaming Standards Association (GSA)

"data": {
"secureToken": "A1B2C3D4E5F60718",
"playerId": "00101977",
"accountId": "Z100187",
"gameSessionId": "ABCD1234EFGH5678",
"gameCycleId": "9876FEDC5432BAFE",
"cancelAckArray": [

{
"transSeq": 1,
"transId": "12345601",
"transAmt": 100,
"transType": "debit",
"transCategory": "wager",
"transDesc": "1 Line 1 Credit",
"referenceId": "98765401",
"transDay": "2014-10-26",
"cancelId": "98765402",
"cancelDay": "2014-10-26",
"cancelDetailArray": [

{
"balanceType": "cashable",
"balanceSeq": 252,
"detailAmt": 100,
"detailType": "credit",
"balanceAmt": 50000

}
]

}
],
"accountBalance": {

"playerId": "00101977",
"accountId": "Z100187",
"currencyCode": "USD",
"messageArray": [

{
"accountMsg": "Welcome back!"

},
{

"accountMsg": "Good Luck!"
}

],
"availBalanceAmt": 50000,
"availFreeSpins": false,
"balanceArray": [

{
"balanceType": "cashable",
"balanceAmt": 50000

},
{

"balanceType": "cashable",
"balanceAmt": 2500,
"balanceStatus": "blocked",
"balanceRestrict": "Deposit Pending"

},
{

"balanceType": "nonCashable",
"balanceAmt": 10000,
"balanceStatus": "blocked",
"balanceRestrict": "Required Wagers Not Made",
"freeSpins": true,
"freeSpinId": "be97f52a-9b10-4013-997c-b6b98b6a82d0",

GSA Third-Party Game Interface V1.0 Chapter 6
Look Inside Game Play

Released: 2018/02/15 Page 157
© 2018 Gaming Standards Association (GSA)

"freeSpinCnt": 100,
"freeSpinValue": 100

}
]

}
}

GSA Third-Party Game Interface V1.0 Chapter 6
Look Inside Game Play

Page 158 Released: 2018/02/15
© 2018 Gaming Standards Association (GSA)

6.10 TPI_endGameCycle Command
This command is used by the RGS to report that a Game Cycle has ended. A TPI_endGameCycleAck
command is generated in response to the TPI_endGameCycle command.

In addition to other error codes that the iGP may report, the iGP may report the following error codes, as
appropriate, indicating that the requested action was not taken.

6.10.1 Duplicate Detection
If the Game Cycle specified in the TPI_endGameCycle command is already finished, the iGP MUST simply
respond with a logically equivalent TPI_endGameCycleAck response; the iGP MUST include the same Revenue
Day (revenueDay) and Game Cycle Exception (gameCycleExc) that were reported when the Monetary
Transactions were first ended.

Table 6.18 TPI_endGameCycle Error Codes

Error Code Description

ERR022 Invalid Secure Token.

ERR023 Incorrect Player Account Identifier for Secure Token.

ERR024 Invalid Game Session Identifier.

ERR028 Transaction Failed (include additional information in errorMsg).

ERR029 Invalid Game Cycle Identifier.

ERR031 Incorrect Player Account Identifier for Game Session.

ERR032 Incorrect Game Session Identifier for Game Cycle.

ERR036 Incorrect Player Identifier for Secure Token.

ERR037 Incorrect Player Identifier for Game Session.

Table 6.19 TPI_endGameCycle Properties

Property Restrictions Description

secureToken type: t_secureToken
use: optional
default: <empty>

Secure Token; current value of the Secure
Token.

playerId type: t_playerId
use: required

Player Identifier; value of the Player Identifier
received in the Game Launch URL.

accountId type: t_accountId
use: required

Player Account Identifier; value of the Player
Account Identifier received in the Game
Launch URL.

gameSessionId type: t_gameSessionId
use: required

Game Session Identifier; identifier assigned by
the RGS to the Game Session.

GSA Third-Party Game Interface V1.0 Chapter 6
Look Inside Game Play

Released: 2018/02/15 Page 159
© 2018 Gaming Standards Association (GSA)

currencyCode type: t_currencyCode
use: required

Currency Code; identifies the currency being
used for the Game Session.

brandId type: t_brandId
use: required

Brand Identifier; identifies the brand being
used for the Game Session.

skinId type: t_skinId
use: required

Skin Identifier; identifies the skin being used
for the Game Session.

localeCode type: t_localeCode
use: required

Locale Code; set to the locale (language)
currently selected by the player.

gameCycleId type: t_gameCycleId
use: required

Game Cycle Identifier; identifier assigned by
the RGS to the game cycle.

gameCycleExc type: t_gameCycleCodes
use: optional
default: 0

Game Cycle Exception Code.

gameGroupId type: t_gameGroupId
use: optional
default: <empty>

Game Cycle Group Identifier; identifier
assigned by the RGS to a group of game cycles
that are dependent of the same decision.

Player Tracking Information

turnoverAmt type: t_money
use: required

Turnover Amount; the total of all player
wagers for the Game Cycle; set to 0 if the
Game Cycle was cancelled.

theoreticalWin type: t_money
use: required

Theoretical Win; the total player theoretical
win from all player wagers for the Game Cycle;
set to 0 if Game Cycle was cancelled.

baseWin type: t_money
use: required

Base Win; the total of all base paytable wins
for the Game Cycle (win or inKindWin); set to
0 if Game Cycle was cancelled.

progWin type: t_money
use: optional
default: 0

Standard Jackpot Win; the total of all standard
progressive jackpot wins for the Game Cycle
(progWin or progInKindWin); set to 0 if Game
Cycle was cancelled.

mysteryWin type: t_money
use: optional
default: 0

Mystery Jackpot Win; the total of all mystery
progressive jackpot wins for the Game Cycle
(mysteryWin or mysteryInKindWin); set to 0 if
Game Cycle was cancelled.

bonusWin type: t_money
use: optional
default: 0

Bonus Win; the total of all bonus wins for the
Game Cycle (bonusWin or bonusInKindWin);
set to 0 if Game Cycle was cancelled.

timePlayed type: t_quantity
use: required

Time Played; the total time played (in seconds)
during the Game Cycle; set to 0 if Game Cycle
was cancelled.

Table 6.19 TPI_endGameCycle Properties

Property Restrictions Description

GSA Third-Party Game Interface V1.0 Chapter 6
Look Inside Game Play

Page 160 Released: 2018/02/15
© 2018 Gaming Standards Association (GSA)

6.10.2 TPI_endGameCycle Example
The following example demonstrates the construction of an TPI_endGameCycle command reporting that a
Game Cycle has ended.

"command": "TPI_endGameCycle",
"data": {

"secureToken": "A1B2C3D4E5F60718",
"playerId": "00101977",
"accountId": "Z100187",
"gameSessionId": "ABCD1234EFGH5678",
"currencyCode": "USD",
"brandId": "myBrand",
"skinId": "mySkin",
"localeCode": "en-US",
"gameCycleId": "9876FEDC5432BAFE",
"gameCycleExc": 0,
"gameGroupId": "",
"turnoverAmt": 100,
"theoreticalWin": 96,
"baseWin": 200,
"timePlayed": 4,
"gamesPlayed": 1

}

gamesPlayed type: t_quantity
use: required

Game Played; the total number of games
played by the player during the Game Cycle;
set to 0 if Game Cycle was cancelled.

Table 6.19 TPI_endGameCycle Properties

Property Restrictions Description

GSA Third-Party Game Interface V1.0 Chapter 6
Look Inside Game Play

Released: 2018/02/15 Page 161
© 2018 Gaming Standards Association (GSA)

6.11 TPI_endGameCycleAck Command
This command is used by the iGP to acknowledge that a Game Cycle has been finished. The
TPI_endGameCycleAck command is generated in response to the TPI_endGameCycle command.

6.11.1 TPI_endGameCycleAck Example
The following example demonstrates the construction of a TPI_endGameCycleAck command confirming that a
Game Cycle has been finished.

"command": "TPI_endGameCycleAck",
"data": {

"secureToken": "A1B2C3D4E5F60718",
"playerId": "00101977",
"accountId": "Z100187",
"gameSessionId": "ABCD1234EFGH5678",
"gameCycleId": "9876FEDC5432BAFE",
"revenueDay": "2016-03-15",
"accountBalance": {

"playerId": "00101977",
"accountId": "Z100187",
"currencyCode": "USD",
"messageArray": [

{
"accountMsg": "Welcome back!"

Table 6.20 TPI_endGameCycleAck Properties

Property Restrictions Description

secureToken type: t_secureToken
use: optional

Secure Token; when included, MUST be set to
the corresponding value from the request or a
new unique Secure Token assigned by the iGP;
when omitted, the value of the Secure Token is
unchanged.

playerId type: t_playerId
use: required

Player Identifier; MUST be set to the
corresponding value from the request.

accountId type: t_accountId
use: required

Player Account Identifier; MUST be set to the
corresponding value from the request.

gameSessionId type: t_gameSessionId
use: required

Game Session Identifier; MUST be set to the
corresponding value from the request.

gameCycleId type: t_gameCycleId
use: required

Game Cycle Identifier; MUST be set to the
corresponding value from the request.

revenueDay type: t_date
use: required

Revenue Day; gaming day on which the game
cycle was finished; assigned by the iGP when the
game is finished.

accountBalance type: accountBalance
use: required

Contains account balance information. See
Section 5.9, TPI_playerBalance Command for
details.

GSA Third-Party Game Interface V1.0 Chapter 6
Look Inside Game Play

Page 162 Released: 2018/02/15
© 2018 Gaming Standards Association (GSA)

},
{

"accountMsg": "Good Luck!"
}

],
"availBalanceAmt": 50000,
"availFreeSpins": false,
"balanceArray": [

{
"balanceType": "cashable",
"balanceAmt": 50000

},
{

"balanceType": "cashable",
"balanceAmt": 2500,
"balanceStatus": "blocked",
"balanceRestrict": "Deposit Pending"

},
{

"balanceType": "nonCashable",
"balanceAmt": 10000,
"balanceStatus": "blocked",
"balanceRestrict": "Required Wagers Not Made",
"freeSpins": true,
"freeSpinId": "be97f52a-9b10-4013-997c-b6b98b6a82d0",
"freeSpinCnt": 100,
"freeSpinValue": 100

}
]

}
}

GSA Third-Party Game Interface V1.0 Chapter 6
Look Inside Game Play

Released: 2018/02/15 Page 163
© 2018 Gaming Standards Association (GSA)

6.12 TPI_keepAlive Command
This command is used by the RGS to prevent the iGP from terminating a Game Session due to inactivity. This
command may be the only way that the iGP knows that the game is still in progress. Operational and
jurisdictional requirements will dictate how frequently this command should be generated. A
TPI_keepAliveAck command is generated in response to the TPI_keepAlive command.

In addition to other error codes that the iGP may report, the iGP may report the following error codes, as
appropriate, indicating that the requested action was not taken.

6.12.1 TPI_keepAlive Example
The following example demonstrates the construction of a TPI_keepAlive command.

"command": "TPI_keepAlive",
"data": {

"secureToken": "A1B2C3D4E5F60718",

Table 6.21 TPI_keepAlive Error Codes

Error Code Description

ERR022 Invalid Secure Token.

ERR023 Incorrect Player Account Identifier for Secure Token.

ERR024 Invalid Game Session Identifier.

ERR031 Incorrect Player Account Identifier for Game Session.

ERR036 Incorrect Player Identifier for Secure Token.

ERR037 Incorrect Player Identifier for Game Session.

ERR041 End Game Session Immediately; Do Not Start New Game Session. 1

1 See Section 7.4, TPI_closeGameSession Command for more details.

ERR042 End Game Session Immediately; Start New Game Session. 1

Table 6.22 TPI_keepAlive Properties

Property Restrictions Description

secureToken type: t_secureToken
use: required

Secure Token; current value of the Secure Token.

playerId type: t_playerId
use: required

Player Identifier; value of the Player Identifier
received in the Game Launch URL.

accountId type: t_accountId
use: required

Player Account Identifier; value of the Player
Account Identifier received in the Game Launch
URL.

gameSessionId type: t_gameSessionId
use: required

Game Session Identifier; identifier assigned by the
RGS to the Game Session.

GSA Third-Party Game Interface V1.0 Chapter 6
Look Inside Game Play

Page 164 Released: 2018/02/15
© 2018 Gaming Standards Association (GSA)

"playerId": "00101977",
"accountId": "Z100187",
"gameSessionId": "ABCD1234EFGH5678"

}

GSA Third-Party Game Interface V1.0 Chapter 6
Look Inside Game Play

Released: 2018/02/15 Page 165
© 2018 Gaming Standards Association (GSA)

6.13 TPI_keepAliveAck Command
This command is used by the iGP to acknowledge receipt of a keep-alive request from the RGS. The
TPI_keepAliveAck command is generated in response to a TPI_keepAlive command.

6.13.1 keepAliveAck Example
The following example demonstrates the construction of a keepAliveAck command.

"command": "keepAliveAck",
"data": {

"secureToken": "A1B2C3D4E5F60718",
"playerId": "00101977",
"accountId": "Z100187",
"gameSessionId": "ABCD1234EFGH5678"

}

Table 6.23 TPI_keepAliveAck Properties

Property Restrictions Description

secureToken type: t_secureToken
use: optional

Secure Token; when included, MUST be set to the
corresponding value from the request or a new
unique Secure Token assigned by the iGP; when
omitted, the value of the Secure Token is unchanged.

playerId type: t_playerId
use: required

Player Identifier; MUST be set to the corresponding
value from the request.

accountId type: t_accountId
use: required

Player Account Identifier; MUST be set to the
corresponding value from the request.

gameSessionId type: t_gameSessionId
use: required

Game Session Identifier; MUST be set to the
corresponding value from the request.

GSA Third-Party Game Interface V1.0 Chapter 6
Look Inside Game Play

Page 166 Released: 2018/02/15
© 2018 Gaming Standards Association (GSA)

	Chapter 1 Look Inside Introduction
	1.1 Introduction

	Chapter 6 Look Inside Game Play
	6.1 Introduction
	6.1.1 Starting and Finishing Game Cycles
	6.1.2 Retrying Monetary Transactions
	6.1.3 Reporting Associated Game Sessions
	6.1.4 Reconciliation Commands
	6.1.5 Special Transactions
	6.1.6 Player Tracking

	6.2 Sequence Diagrams
	6.2.1 Simple Games
	6.2.2 Complex Games
	6.2.3 Initial Buy-In Games
	6.2.3.1 Managing Temporary Player Accounts
	6.2.3.2 Multiple Game Cycles

	6.3 TPI_startGameCycle Command
	6.3.1 Duplicate Detection
	6.3.2 TPI_startGameCycle Example

	6.4 TPI_startGameCycleAck Command
	6.4.1 TPI_startGameCycleAck Example

	6.5 TPI_moneyTransactions Command
	6.5.1 Duplicate Detection
	6.5.2 TPI_moneyTransactions Examples

	6.6 TPI_moneyTransactionsAck Command
	6.6.1 TPI_moneyTransactionsAck Examples

	6.7 TPI_cancelTransactions Command
	6.7.1 Duplicate Detection
	6.7.2 TPI_cancelTransactions Example

	6.8 TPI_cancelGameCycle Command
	6.8.1 Duplicate Detection
	6.8.2 TPI_cancelGameCycle Example

	6.9 TPI_cancelTransactionsAck Command
	6.9.1 TPI_cancelTransactionsAck Example

	6.10 TPI_endGameCycle Command
	6.10.1 Duplicate Detection
	6.10.2 TPI_endGameCycle Example

	6.11 TPI_endGameCycleAck Command
	6.11.1 TPI_endGameCycleAck Example

	6.12 TPI_keepAlive Command
	6.12.1 TPI_keepAlive Example

	6.13 TPI_keepAliveAck Command
	6.13.1 keepAliveAck Example

