

GSA GAT PROTOCOL V4.1
Game Authentication Terminal

Gaming Standards Association

GAT Technical Committee

Released: 2016/03/14

GAMINGSTANDARDS.COM

GSA GAT Protocol V4.1
Released 2016/03/14, by Gaming Standards Association (GSA).

Patents and Intellectual Property
NOTE: The user's attention is called to the possibility that compliance with this [standard/
specification] may require use of an invention covered by patent rights. By publication of this
[standard/specification], GSA takes no position with respect to the validity of any such patent rights
or their impact on this [standard/specification]. Similarly, GSA takes no position with respect to the
terms or conditions under which such rights may be made available from the holder of any such rights.
Contact GSA for further information.

Trademarks and Copyright
Copyright © 2016 Gaming Standards Association (GSA). All trademarks used within this document
are the property of their respective owners. Gaming Standards Association and the puzzle-piece GSA
logo are registered trademarks and/or trademarks of the Gaming Standards Association.

This document may be copied in part or in full by members of GSA, or non-members that have been
authorized by the GSA Board of Directors, provided that ALL copies must maintain the copyright,
trademark and any other proprietary notices contained on/in the materials. NO material may be
modified, edited or taken out of context such that its use creates a false or misleading statement or
impression as to the positions, statements or actions of GSA.

GSA Contact Information
E-mail: sec@gamingstandards.com

WWW: http://www.gamingstandards.com

GSA GAT Protocol
V4.1 Table of Contents

Released: 2016/03/14 Page i
© 2016 Gaming Standards Association (GSA)

I About This Document.. iii
I.I Acknowledgements ... iii
I.II Related Documents.. iii
I.III Document Conventions ... iii

I.III.I Indicating Requirements, Recommendations, and Options .. iii
I.III.II Changes, Corrections, and Clarifications ... iii
I.III.III Other Formatting Conventions.. iv

I.IV Categorization of Standards ... iv

Chapter 1
Introduction... 1

1.1 Overview...2

Chapter 2
Physical Layer .. 3

2.1 Physical Layer Between EGM and Master..4

Chapter 3
Application Command Layer ... 7

3.1 Overview...8
3.2 Application Layer Format ...8

3.2.1 Byte Order ..8
3.2.2 Bit Order...8
3.2.3 Transmission Order ..9
3.2.4 Data Formats...9
3.2.5 Application Layer Frame.. 10

3.3 Commands - Query / Response Pairs... 10
3.3.1 Status Query (0x01 SQ).. 10
3.3.2 Status Response (0x81 SR) ... 11
3.3.3 Last Authentication Status Query (0x02 LASQ)... 12
3.3.4 Last Authentication Status Response (0x82 LASR) .. 12
3.3.5 Last Authentication Results Query (0x03 LARQ).. 13
3.3.6 Last Authentication Results Response (0x83 LARR) ... 14
3.3.7 Initiate Authentication Calculation Query (0x04 IACQ)... 15
3.3.8 Initiate Authentication Calculation Response (0x84 IACR) .. 16

Chapter 4
Special Functions ... 17

4.1 Overview... 18
4.2 Defined Special Functions .. 20

4.2.1 Special Function: Get Special Functions... 20
4.2.2 Special Function: Get File filename.xml ... 21

4.2.2.1 Get File AuthenticationResponse.xml %%SHA1_HMAC%% 21
4.2.3 Special Function: Component name %%SHA1_HMAC%%.. 22
4.2.4 Special Function: doVerification name algorithm parameters 23

4.2.4.1 Component Name .. 23
4.2.4.2 Algorithms & Parameters .. 23
4.2.4.3 Constructing Requests .. 24
4.2.4.4 doVerification Examples .. 24
4.2.4.5 Using Offsets... 25
4.2.4.6 Using the SHA1_HMAC Algorithm ... 26
4.2.4.7 Reporting Results... 26

Chapter 5

Table of Contents

GSA GAT Protocol
V4.1 Table of Contents

Page ii Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

Operational Scenarios .. 27
5.1 Sample Get Special Functions request ... 28

5.1.1 Example Get Special Functions Response... 29
5.2 Example All Components Authentication Request .. 30

5.2.1 Example All Components Authentication Response.. 31
5.3 Example SHA-1 Authentication ... 32

5.3.1 Example SHA-1 Response.. 33
5.4 Example SHA-1 HMAC Authentication.. 34

5.4.1 Example SHA-1 HMAC Response .. 36

Appendix A
CRC Calculation .. 37

A.1 CRC Calculation in Java ... 38

Appendix B
XSD for SpecialFunctions and Components... 41

B.1 XSD.. 42

GSA GAT Protocol
V4.1 About This Document

Released: 2016/03/14 Page iii
© 2016 Gaming Standards Association (GSA)

I About This Document
The GSA GAT Protocol is a communication standard used by regulators and operators to identify and
authenticate gaming software and firmware in the field.

I.I Acknowledgements
The Gaming Standards Association expresses its appreciation to all members of the GAT committee (past and
present) as well as gaming regulators and others, for their significant contribution and dedication to the
creation of this standard.

I.II Related Documents
SVC Serial Protocol v1.0

http://www.gamingstandards.com/pdfs/standards/SVC_r1.pdf

Game Authentication Terminal Program (GAT3) Requirements Document

http://www.gamingstandards.com/pdfs/standards/GSA_GAT3_r1.pdf

EIA/TIA-232 (RS-232)

http://www.tiaonline.org/standards/

I.III Document Conventions

I.III.I Indicating Requirements, Recommendations, and Options
Terms and phrases in this document that indicate requirements, recommendations, and options are used as
defined in the IETF RFC 2119.

In summary:

Requirements:
To indicate requirements, this document uses "MUST", "MUST NOT", "REQUIRED".

Recommendations:

To indicate recommendations, this document uses "SHOULD", "SHOULD NOT",
"RECOMMENDED".

Options:

To indicate options, this document uses "MAY" or "OPTIONAL".

I.III.II Changes, Corrections, and Clarifications
A pale yellow banner identifies content that has been changed, corrected, or clarified since the last released
version, along with text that identifies in what version the changes were made. The following example shows
how this convention is used, and indicates that corrections were made in v3.50.1 to content.

http://www.gamingstandards.com/pdfs/standards/SVC_r1.pdf
http://www.gamingstandards.com/pdfs/standards/GSA_GAT3_r1.pdf
http://www.tiaonline.org/standards/

GSA GAT Protocol
V4.1 About This Document

Page iv Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

Note that correction banners and the associated inserted and deleted text is highlighted only in the mark-up
PDF of released versions, and are provided only for changes made between the last released version and the
current released version. Correction indicators are not carried forward from version to version.

Lorem ipsum dolor sit amet, consectetur consectetur adipiscing elit. Aliquam consectetur justo vel odio
consequat rutrum. Morbi magna neque, blandit a dictum nec, vestibulum ac velit. Donec ultrices imperdiet mi,
eget pharetra enim porttitor quis. Nam vestibulum massa eget augue consectetur condimentum tempus enim
pellentesque.

I.III.III Other Formatting Conventions
• Blue text indicates an internal link or external hyperlink to a URL.

• Bold (other than in headings) or underlined text is used for emphasis, unless specifically indicated
otherwise.

• Italicized text (other than in headings) is used for terms being introduced and/or being defined.

• Courier New font is used to indicate code or pseudo code.

I.IV Categorization of Standards

To help provide guidance to implementers regarding the maturity and stability of its standards, GSA
categorizes its standards as Candidate Standards, Proposed Standards, or Recommended Standards. This
specification is categorized as a Proposed Standard.

• Standards identified as Candidate Standards are the least mature; changes to these standards should be
expected in future releases.

• Standards identified as Proposed Standards have been reduced to practice and deployed; very few
changes to these standards should be expected.

• Standards identified as Recommended are the most mature and have been widely deployed; no
changes to these standards should be expected.

Further details about the categorization of standards and extensions can be found in the GSA Policy
Handbook.

Change in v3.50.1

Correction in v4.1

GSA GAT Protocol Chapter 1
V4.1 Introduction

Released: 2016/03/14 Page 1
© 2016 Gaming Standards Association (GSA)

Chapter 1

Introduction

GSA GAT Protocol Chapter 1
V4.1 Introduction

Page 2 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

1.1 Overview
GAT defines a communications protocol used, between a master and an EGM, to authenticate software and
firmware components within the EGM. Typically, a portable PC or a laptop is used for the role of the master.
EGMs and other devices can be used for the role of the EGM.

The GAT communication protocol is simple in order to reduce complexity of design, implementation, testing
and usage. Due to the simplicity of this protocol, a standard layered approach is not necessary. Only the
physical layer and the application layer command set are specified.

The GAT protocol and associated calculations are to be run on a properly functioning EGM. Any attempt to
use GAT while an EGM is in an error state, tilted, or otherwise malfunctioning is beyond the scope of this
standard.

The GAT protocol and associated calculations are designed for the purposes of verifying software content on
an EGM. Any attempt to use GAT for any other purpose, such as verifying jackpots, game history recall, and
so forth, is beyond the scope of this standard.

GSA GAT Protocol Chapter 2
V4.1 Physical Layer

Released: 2016/03/14 Page 3
© 2016 Gaming Standards Association (GSA)

Chapter 2

Physical Layer

GSA GAT Protocol Chapter 2
V4.1 Physical Layer

Page 4 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

2.1 Physical Layer Between EGM and Master
The physical layer between the EGM and the master is:

• point-to-point

• full duplex

• no handshaking

• 3-wire (Tx/Rx/Gnd) RS232C

The default communication:

• 9600 baud with eight data bits

• no parity

• one stop bit

The master is typically a laptop PC and is generally assumed to provide a standard DE9 (commonly known as
a DB9) male connector (DE9M) configured as a DTE interface, as shown in Table 2.1.

The EGM MUST provide a connector suitable for connection to this typical master DE9M. There are three
options by which this may be accomplished:

1. The EGM MAY provide a standard DE9 female connector (DE9F) configured as a DCE, as shown in
Table 2.2. The master may connect to the EGM using a standard RS-232 “straight-through” cable.

2. The EGM MAY provide a standard DE9 male connector (DE9M) configured as a DTE, as shown in
Table 2.1. The master may connect to the EGM using a standard RS-232 “null modem” cable.

3. The EGM MAY provide a non-standard connector. If a non-standard connector is provided, the
EGM manufacturer MUST clearly document the pinout for this connector, and MUST make available
a cable or adapter that mates to the EGM’s GAT connector on one end and has a standard DE9
female connector (DE9F) configured as a DCE, as shown in Table 2.2, on the other end. This cable
MUST NOT exceed 10 feet in length.

Table 2.1 Pinout for DE9M Connector Configured as DTE

Pin Function

Pin 2 RX. Receives data.

Pin 3 TX. Transmits data.

Pin 5 GND. Signal ground.

Table 2.2 Pinout for DE9F Connector Configured as DCE

Pin Function

Pin 2 TX. Transmits data.

Pin 3 RX. Receives data.

Pin 5 GND. Signal ground.

GSA GAT Protocol Chapter 2
V4.1 Physical Layer

Released: 2016/03/14 Page 5
© 2016 Gaming Standards Association (GSA)

The EGM GAT connector MUST be located within a secure area of the EGM. It is recommended that the
GAT connector be located in an easily accessible location within the interior of the EGM cabinet and labeled
for easy identification.

NOTE:
This standard does not specify whether a dedicated physical port is (or is not) required for the EGM
GAT connector. This leaves the option open to the manufacturer as to whether port sharing is an
acceptable solution within the particular jurisdiction where it will be used. It is up to the manufacturer
to determine whether the jurisdiction will allow port sharing.

GSA GAT Protocol Chapter 2
V4.1 Physical Layer

Page 6 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

GSA GAT Protocol Chapter 3
V4.1 Application Command Layer

Released: 2016/03/14 Page 7
© 2016 Gaming Standards Association (GSA)

Chapter 3

Application Command

Layer

GSA GAT Protocol Chapter 3
V4.1 Application Command Layer

Page 8 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

3.1 Overview
At the application layer, the master sends a query to the EGM and waits for the response before sending another
command. The EGM always responds to a query with a response. As a consequence no more than one query
/ response may be pending at the master / EGM side at any given time.

The EGM MUST validate the length and CRC, and then it MUST validate the command byte. The EGM
SHOULD NOT respond to messages with invalid length, CRC, or command bytes.

The Master MUST validate the length and CRC, and then it MUST validate the command byte. The master
SHOULD ignore messages with invalid length, CRC, or command bytes.

The following time-outs will be in effect:

1. The EGM MUST respond within 200ms of receiving a complete message from the master.

2. If the master does not receive a response to a request, the master SHOULD wait at least 225ms before
sending another request.

3. The recommended inter-byte timeout value is 5ms.

4. If the EGM has determined that the previously received byte was the last byte of a valid message, or
200ms have elapsed since the previously received byte, the EGM SHOULD treat the next byte
received as belonging to a new message.

5. The master MUST wait at least 10ms upon receipt of a response before transmitting again.

3.2 Application Layer Format

3.2.1 Byte Order
The GAT protocol uses Big Endian (most significant byte first) byte ordering for all cases where multi-byte,
numeric information is conveyed by the GAT protocol unless another format is specifically stated (typically
through the use of the Data Format byte).

3.2.2 Bit Order
For bit-field parameters, bit 0 always refers to the least significant bit. Bit 7 always refers to the most significant
bit. The following table may be used to determine bit positions:

Table 3.1 Bit Positions (Sheet 1 of 2)

Bit Bit Mask Description

0 0x01 Least significant bit.

1 0x02 2nd bit position.

2 0x04 3rd bit position.

3 0x08 4th bit position.

4 0x10 5th bit position.

5 0x20 6th bit position.

GSA GAT Protocol Chapter 3
V4.1 Application Command Layer

Released: 2016/03/14 Page 9
© 2016 Gaming Standards Association (GSA)

3.2.3 Transmission Order
The bytes of a message are transmitted from left to right—that is, command byte first and CRC bytes last. The
order of the bits within a byte follows the RS-232 specification of LSB (bit 0) first and MSB last. All bits of a
byte are transmitted before the next byte is started.

3.2.4 Data Formats
The following data formats are supported by the GAT protocol:

6 0x40 7th bit position.

7 0x80 Most significant bit.

Binary: Each byte represents a binary value between 0x00 through 0xFF inclusive.

Packed BCD: Each byte represents a decimal value between 00 and 99 inclusive, represented as binary
0x00 through 0x99.

HEX-ASCII: A hexadecimal string representation of a binary value. Binary values are converted to
uppercase ASCII hexadecimal strings that represent the binary values. An even number
of nibbles (hexadecimal digits) MUST be included. Only ASCII characters 0-9 (0x30
through 0x39) and A-F (0x41 through 0x46) MUST be used. For example: the binary
value 0x0123456789abcdef (or 0x0123456789ABCDEF) is represented as the string
0123456789ABCDEF and is transmitted as the bytes 0x30, 0x31, 0x32, 0x33, 0x34,
0x35, 0x36, 0x37, 0x38, 0x39, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46. See Section 5.4,
Example SHA-1 HMAC Authentication, which documents a transmission that includes
a 20-byte binary key value.

ASCII: An ASCII data string. May include control characters such as CR (0x0D) and LF (0x0A).

XML: A well-formed XML document conforming to XML version 1.0.

XML version 1.0 requires that XML processors MUST support UTF-8 and UTF-16
encodings of an XML document. Thus, implementations of the GAT protocol
MUST support UTF-8 and UTF-16 encodings for the XML data type. However,
since UTF-8 tends to create smaller document sizes than UTF-16, implementations
of this protocol SHOULD use UTF-8 encodings for XML documents. The GAT
protocol does not provide a mechanism for selecting the encoding of an XML
document. The default encoding is UTF-8.

Table 3.1 Bit Positions (Sheet 2 of 2)

Bit Bit Mask Description

GSA GAT Protocol Chapter 3
V4.1 Application Command Layer

Page 10 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

3.2.5 Application Layer Frame

This frame consists of the following fields:

3.3 Commands - Query / Response Pairs
Each query has one corresponding response. The appropriate matched response should be returned by the
EGM when a query is received and processed. The command byte for a response is the same as that of the
query, except the high bit is set (i.e. 0x02-0x82).

3.3.1 Status Query (0x01 SQ)
[Master  EGM] Request the current status information from the EGM.

Table 3.2 Frame Structure

Command Length Message Data CRC

1 byte
binary

1 byte
binary

0 to 251 bytes
(varies)

2 bytes
binary

Table 3.3 Frame Field Descriptions

Field Description

Command This is a command byte that indicates the message format and its purpose. Transmitted
first.

Length The total number of bytes in frame (including Command, Length, Message Data, and
CRC bytes). Note: The maximum message length is restricted to 255 bytes.

Message Data This field contains any data relevant to the command. The data format depends on the
specific command.

CRC A CRC-16 checksum of the Command, Length, and Message Data fields. Each frame is
protected with a 16-bit Cyclic Redundant Check sequence. The CRC uses the industry
standard CRC-16 polynomial generator of x^16 + x^15 + x^2 + 1 starting with a seed of
0xFFFF. See Appendix A for further details on correct implementation of this CRC.
Transmitted last.

Table 3.4 0x01 SQ Structure

Cmd = 0x01 SQ Length = 0x04 CRC

1 byte
binary

1 byte
binary

2 bytes
binary

GSA GAT Protocol Chapter 3
V4.1 Application Command Layer

Released: 2016/03/14 Page 11
© 2016 Gaming Standards Association (GSA)

3.3.2 Status Response (0x81 SR)
[EGM  Master] Return the current status information.

Table 3.5 0x81 SR Structure

Cmd = 0x81 SR Length = 0x08 Version ID Status Data1 Data Format CRC

1 byte
binary

1 byte
binary

2 bytes
packed BCD

1 byte
binary

1 byte
binary

2 bytes
binary

Table 3.6 0x81 SR Fields

Field Description

Version ID Indicates the version of the GAT protocol supported by the EGM. The version is a
4-digit number, where the first byte is 2-digit major revision number and the second
byte is 2-digit minor revision number. The errata revision number is not included. For
example,

0x03 0x50 indicates GAT version 3.50.0, 3.50.1, 3.50.2, and so on;

0x03 0x51 indicates GAT version 3.51.0, 3.51.1, 3.51.2, and so on; and,

0x04 0x01 indicates GAT version 4.1.0, 4.1.1, 4.1.2, etc.

Status Data1 General Status:

Bit 0: Calculation Status.

0 = Idle.

1 = Calculating.

Bit 1: Last Authentication Results.

0 = Not Available.

1 = Available.

Bit 2 & 3: See Table 3.7 for Current Calculation.

Bit 4 to 7: Reserved.

Always set to 0.

Data Format Data formats supported:

0x00 = Reserved, do not use.

0x01 = Plain text format.

0x02 – XML format.

0x03 to 0xFF – Reserved for future use.

GSA GAT Protocol Chapter 3
V4.1 Application Command Layer

Page 12 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

3.3.3 Last Authentication Status Query (0x02 LASQ)
[Master  EGM] Request the status of the last authentication performed by the EGM. Only the status of the
last completed authentication is returned.

3.3.4 Last Authentication Status Response (0x82 LASR)
[EGM  Master] Return the status of the last authentication result calculated by the EGM.

Table 3.7 0x81 Status Data1 Field: Bit 2 & 3, Current Calculation

Bit 3
Value

Bit 2
Value Description

0 0 Requested.

1 0 Calculating.

0 1 Finished.

1 1 Error, cannot complete or failed.

Table 3.8 0x02 LASQ Structure

Cmd = 0x02 LASQ Length = 0x04 CRC

1 byte
binary

1 byte
binary

2 bytes
binary

Table 3.9 0x82 LASR Structure

Cmd = 0x82 LASR Length = 0x09 Authentication Level Time CRC

1 byte
binary

1 byte
binary

1 byte
binary

4 bytes
binary

2 bytes
binary

Table 3.10 0x82 LASR Fields

Field Description

Authentication Level Indicates the level or type of authentication that was calculated. A value of 0x01
refers to Level 1 Authentication, 0x02 refers to Level 2 Authentication, and so on.
A value of 0x00 indicates no authentication results are available. For this version of
the GAT protocol, an EGM MUST support levels 0xBA and 0x00. Other levels
MAY be defined in other versions of the GAT protocol and MAY be supported
by the EGM.

Time Time (in seconds) since last results were calculated. If no authentication results are
available, then a value of 0x00000000 is returned.

GSA GAT Protocol Chapter 3
V4.1 Application Command Layer

Released: 2016/03/14 Page 13
© 2016 Gaming Standards Association (GSA)

3.3.5 Last Authentication Results Query (0x03 LARQ)
[Master  EGM] Request the previous/currently available Authentication results.

NOTES:
1. It is important to note that this mechanism of accessing the authentication results is linear, not

random access. The rule exists in order to reduce any possible load or restrictions on the
implementation within the EGM. The implications of this are that for each result, the first frame
requested can only be frame 1. After that the master can only request either the first frame, frame n, or
frame n+1, where n was the previous frame requested. This results in a linear request process, with the
ability to reset back to the first frame, or request a retransmit of the current frame, or request that the
next frame be transmitted.

2. Prior to reaching the last frame, the master MAY issue another command, such as an SQ or LASQ
command. Unless the command nullifies the authentication results, the master MAY resume the
LARQ series following the command. The master does not have to restart at frame 1 unless the
authentication results have been nullified.

For example, if the authentication results require 10 frames and the master issues an SQ command
after receiving frame 5, the master may resume gathering the authentication results at frame 6.
However, if the master issues an IACQ after receiving frame 5, nullifying the previous authentication
results, the master must restart at frame 1 once the new authentication results are available.

Table 3.11 0x03 LARQ Structure

Cmd = 0x03 LARQ Length = 0x07 Data Format Frame Number CRC

1 byte
binary

1 byte
binary

1 byte
binary

2 bytes
binary

2 bytes
binary

Table 3.12 0x03 LARQ Fields

Field Description

Data Format The format of the data:

0x00 = Reserved, do not use.

0x01 = Plain text format.

0x02 = XML format.

0x03 to 0xFF = Reserved for future use.

Frame Number This number, with the most significant byte first, is used to indicate the Data Frame
that should be returned as data in the Last Authentication Results Response (0x83
LARR). The frame number data is indexed from 1, so a value of 0 is illegal. The range
is large enough to handle a file containing up to 65535 frames.

GSA GAT Protocol Chapter 3
V4.1 Application Command Layer

Page 14 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

3.3.6 Last Authentication Results Response (0x83 LARR)
[EGM  Master] Return a data frame of the previous or currently available Authentication results.

NOTE:
Authentication Results are not available while an Authentication Calculation is in progress. If a 0x03
LARQ request is received while an Authentication Calculation is in progress, the EGM MUST return
an error to the master in the 0x83 LARR response, setting Bit 0 and Bit 1 of the Status Data to 1.

Table 3.13 0x83 LARR Structure

Cmd = 0x83 LARR Length = 0x07 to 0xFF Status Data Frame Number Data CRC

1 byte
binary

1 byte
binary

1 byte
binary

2 bytes
binary

0 to 248 bytes
(varies)

2 bytes
binary

Table 3.14 0x83 LARR Fields

Field Description

Status Data General Status:

Bit 0:Error Status.

0 = No error.

1 = Error. (Note: Error would usually indicate either no data available, or an
invalid frame.)

Bit 1: Frame Status.

0 = Not Last Frame.

1 = Last Frame.

Frame Number Used to indicate the frame, with the most significant byte first, that is being returned
in the Data field. MAY be set to frame 0 (0x00 0x00) when an error is being reported
(Bit 0 of the Status Data set to 1).

Data Contains requested Authentication information (formatted as requested). This
response is the mechanism used by the EGM to communicate the result of any
special function. See Chapter 4 and Chapter 5 for further discussion of the format for
authentication and special function responses.

GSA GAT Protocol Chapter 3
V4.1 Application Command Layer

Released: 2016/03/14 Page 15
© 2016 Gaming Standards Association (GSA)

3.3.7 Initiate Authentication Calculation Query (0x04 IACQ)
[Master  EGM] Request that the EGM start authentication calculation.

NOTE:
If an Authentication Calculation is in progress when this command is received by the EGM, the EGM
MUST abort the calculation and start the new Authentication Calculation. Issuing a new
Authentication Calculation while the EGM is calculating is not recommended. The master can
determine the state of the EGM using the 0x01 SQ command.

Table 3.15 0x04 IACQ Structure

Cmd = 0x04 IACQ Length = 0x05 to 0xFF Authentication Level Authentication Parameter CRC

1 byte
binary

1 byte
binary

1 byte
binary

0 to 250 bytes
HEX-ASCII

2 bytes
binary

Table 3.16 0x04 IACQ Fields

Field Description

Authentication Level Indicates the level or type of authentication calculation that should be returned. A
value of 0x01 refers to Level 1 Authentication, 0x02 refers to Level 2 Authentication,
and so on. A value of 0x00 is illegal. For this version of the GAT protocol, an EGM
MUST support level 0xBA. The EGM MUST return error code 0x04 if level 0x00 is
requested. Other levels MAY be defined in other versions of the GAT protocol and
MAY be supported by the EGM.

The special authentication level 0xBA is used by the master to signal that the
Authentication Parameter field contains a special function command. In this case, the
Authentication Parameter field MUST have the first byte set to 0x00. See Chapter 4
and Chapter 5 for further discussion of special functions.

Authentication
Parameter

The Authentication Parameter value is used for some Authentication Levels. The
same value is used for all modules verified by an Authentication Level. If the value is
longer than required by an Authentication Level, it is truncated, the high order bytes
discarded.

The Authentication Parameter is represented in HEX-ASCII format.

If the Authentication Level is set to the special value 0xBA, the first byte of the
Authentication Parameter field MUST be set to 0x00 while the remainder of the field
contains the special function. See Chapter 4 for details. The data format is specified
with each command.

GSA GAT Protocol Chapter 3
V4.1 Application Command Layer

Page 16 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

3.3.8 Initiate Authentication Calculation Response (0x84 IACR)
[EGM  Master] Indicate that the EGM has received a 0x04 IACQ command. The EGM SHOULD maintain
the last 0x04 IACQ result for the master to retrieve for as long as that result is valid, even while the master is
disconnected. Whenever a new 0x04 IACQ request is received by the EGM, the EGM MUST overwrite any
previous results with the new authentication results. If an error occurred such that the IACQ request did not
result in new authentication results, the 0x84 IACR response MUST report the error and the EGM MAY
overwrite or otherwise discard the previous authentication results. In addition, the EGM SHOULD discard
the last 0x04 IACQ result whenever the EGM is reset or the set of supported calculations changes—for
example, due to a change to the set of components on the EGM. If the operator has placed the EGM in a
special GAT authentication mode in order to calculate authentication results, the EGM MAY also discard the
last result when the operator causes the EGM to exit its GAT authentication mode.

Table 3.17 0x84 IACR Structure

Cmd = 0x84 IACR Length = 0x05 Status CRC

1 byte
binary

1 byte
binary

1 byte
binary

2 bytes
binary

Table 3.18 0x84 IACR Fields

Field Description

Status Bit 0: ACK/NACK.

0 = Cannot Acknowledge.

1 = Acknowledged.

Bit 1: Calculation Started.

0 = Not started.

1 = Started.

Bit 2: Level Compliance Error.

0 = Valid Level.

1 = Invalid Level requested.

GSA GAT Protocol Chapter 4
V4.1 Special Functions

Released: 2016/03/14 Page 17
© 2016 Gaming Standards Association (GSA)

Chapter 4

Special Functions

GSA GAT Protocol Chapter 4
V4.1 Special Functions

Page 18 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

4.1 Overview
The master may request the EGM to execute a number of special functions. This is accomplished by setting
the Authentication Level to 0xBA and providing the appropriately formatted command in the Authentication
Parameter field of an Initiate Authentication Calculation Query (0x04 IACQ). Results from the execution of a
special function are sent to the master from the EGM in the Last Authentication Results Response (0x83
LARR).

When formatting special function commands, the following rules MUST be observed:

1. Individual data elements within the command MUST be separated by the tab character (0x09). A tab
character MUST NOT precede the first data element. A tab character MUST NOT follow the last
data element.

2. The name of the special function MUST be the first data element in the command. The name of the
special function is contained in the Feature element of the response to the "Get Special Functions"
command.

3. Unless specified otherwise in the description of the special function, parameters of the special
function, if any, MUST follow the first data element in the same order as they are reported in the
response to the "Get Special Functions" command.

4. When a parameter of the special function specifies a wildcard, the master may replace the wildcard
with an appropriate corresponding value—for example, the matching value contained in the
SEEDS.INI configuration file used by the GAT3.exe program.

5. Wildcards MUST be constructed from a leading %% sentinel (two percent signs), a wildcard name, and
a trailing %% sentinel (two percent signs)—for example, %%SHA1_HMAC%%. The wildcard name MUST be
constructed using one or more valid ASCII characters in the range 0x20 to 0x7E, excluding 0x25 (the
percent sign).

6. The master MUST provide an actual value for the wildcard. If there is no corresponding value for the
wildcard, the wildcard MUST be replaced by "(none)" (0x28 0x6E 0x6F 0x6E 0x65 0x29). If the
wildcard represents a seed, hash, offset, or HMAC key, the text string "(none)" MUST be interpreted
to mean "no seed, hash, offset, or key provided" and MUST NOT be used as a seed, hash, offset, or
key.

7. Special Functions that call for an offset parameter, a salt parameter, a key parameter, or an
authentication hash parameter MUST provide those values in a HEX-ASCII data format (see Section
3.2.4, Data Formats, for more details). If the values are not in HEX-ASCII data format, the EGM
SHOULD respond to a 0x04 IACQ command containing such values with a 0x84 IACR command
containing status 0x00 and not execute the special function.

When the master issues the 0x04 IACQ command, the EGM responds with the Initiate Authentication
Calculation Response (0x84 IACR) command. The EGM MUST use the Status field of the 0x84 IACR to
indicate the state of the request. One of the following states in Table 4.1 MUST be reported by the EGM.

Table 4.1 0x84 IACR States (Sheet 1 of 2)

0x84 Response
Status Field State

0x00 Request not acknowledged—invalid Authentication Parameters detected. Special function
will not be executed.

0x01 Request acknowledged and special function will be executed.

0x03 Request acknowledged and special function started.

GSA GAT Protocol Chapter 4
V4.1 Special Functions

Released: 2016/03/14 Page 19
© 2016 Gaming Standards Association (GSA)

The master MUST be prepared to receive other states from the EGM. Any such states simply indicate that the
request could not be acknowledged (Bit 0 set to 0 or Bit 2 set to 1). The master MUST interpret other states as
if state 0x04 was reported (when Bit 2 is set to 1) or as if state 0x00 was reported (when Bit 2 is set to 0).

After the master issues an 0x04 IACQ containing a special function request, the master may use the Status
Query (0x01 SQ) command to determine if the results of the special function are ready. The EGM should use
the Status field of the Status Response (0x81 SR) to determine the state of the request. One of the following
states MUST be reported by the EGM:

The master MUST be prepared to receive other states from the EGM. Any such states are contradictory and/
or ambiguous. The master MUST interpret other states as if state 0x0C (Idle, Not Available, and Error) was
reported.

Once the EGM has indicated results are ready, the results may be obtained by the master through the use of
the Last Authentication Results Query (0x03 LARQ). The EGM should then respond with the 0x83 LARR
command and set the Data field to appropriate value.

The Data Format for the special function responses that are defined in this section is always XML. Thus, after
a special function that is defined in this section has been successfully executed by the EGM, the Data Format
of the 0x81 SR from the EGM MUST specify XML format (0x02). Likewise, when the master requests the
results of a special function that is defined in this section, the Data Format of the 0x03 LARQ from the master
MUST specify XML format (0x02). Other formats may be used for other types of functions and for reporting
errors.

0x04 Request not acknowledged—invalid Authentication Level detected. Special function will
not be executed.

Table 4.2 0x81 SR States

0x81 Response
Status Data1 Field States Description

0x00 Idle, Not Available, and Requested The special function request has been
received but has not yet been executed.

0x04 Idle, Not Available, and Finished No special function results are available from
the EGM. This is the initial state of the EGM
before any special function requests have
been executed.

0x06 Idle, Available, and Finished The special function has been completed and
the results are available.

0x09 Calculating, Not Available, and
Calculating

The special function is executing.

0x0C Idle, Not Available, and Error The special function failed in some way. No
further information is available.

0x0E Idle, Available, and Error The special function failed in some way.
Information regarding the error is available.

Table 4.1 0x84 IACR States (Sheet 2 of 2)

0x84 Response
Status Field State

GSA GAT Protocol Chapter 4
V4.1 Special Functions

Page 20 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

As described in Section 3.3.8, Initiate Authentication Calculation Response (0x84 IACR), the EGM SHOULD
maintain the last 0x04 IACQ result for the master to retrieve for as long as that result is valid, even while the
master is disconnected. Requesting a new special function MUST overwrite the previous results with the new
authentication results. If an error occurred such that the IACQ request did not result in new authentication
results, an error MUST be reported in the 0x84 IACR response and the EGM MAY overwrite or otherwise
discard the previous authentication results. The EGM SHOULD discard the last 0x04 IACQ result whenever
the EGM is reset or the set of supported special functions changes.

In the following sections, "<00>" is used to indicate an ASCII null character (byte value of 0x00) and "<09>"
is used to indicate an ASCII tab character (byte value of 0x09).

4.2 Defined Special Functions
The GAT process is primarily intended to facilitate compliance with jurisdictional requirements. For example,
Nevada requires an EGM to provide a method to authenticate all EGM control programs and data on demand
via an approved communication port and protocol. It is up to each manufacturer to determine which
components are included in these requirements. It is also up to each manufacturer to determine to what
granularity components may be authenticated. It is strongly recommended that the master be able to
authenticate components to the same level of granularity that they are submitted to the jurisdiction for
approval.

4.2.1 Special Function: Get Special Functions
All EGMs MUST support the "Get Special Functions" special function. To discover which special functions
an EGM supports, the master may send the following 0x04 IACQ:

Upon receipt of this special function, the EGM MUST acknowledge it with a correctly formatted 0x84 IACR.
Once the EGM indicates it is finished by returning a Status of 0x06 in a 0x81 SR, the master may then retrieve
the listing by sending a 0x03 LARQ command. The EGM should respond with a 0x83 LARR command
containing the supported special functions.

The response MUST be XML formatted and conform to the following definition (See Appendix B for more
details):

Table 4.3 0x04 IACQ Structure for Get Special Functions

Cmd Length Authentication Level Authentication Parameter (Data) CRC

0x04 0x1B 0xBA <00>Get Special Functions 0x2B54

GSA GAT Protocol Chapter 4
V4.1 Special Functions

Released: 2016/03/14 Page 21
© 2016 Gaming Standards Association (GSA)

The GatExec attribute MUST be set to default for compatibility with this version of the GAT protocol. The
original GAT3 protocol intended that this attribute could be set to the path of an executable program on the
master; and, the master would save the response in a file by the filename specified in the first parameter, and
then execute the program specified by GatExec. This capability is NOT supported by this version of the GAT
protocol.

The Name and Manufacturer elements SHOULD be included in the SpecialFunctions response. When
included, the Name element MUST contain the product name used by the manufacturer when the EGM was
submitted for regulatory approval. Similarly, when included, the Manufacturer element MUST contain the
name of the manufacturer that submitted the EGM for approval. The intent is for the master to be able to use
the contents of the Name and Manufacturer elements to find the components that were previously approved.
For example, once the master has received a SpecialFunctions response, the master should be able to look up
the components that were previously approved, and then compare those components to the components
contained in the SpecialFunctions response to verify that only approved components are present on the
EGM.

The EGM MUST return a list of all special functions that it supports, other than the "Get Special Functions"
special function. The "Get Special Functions" special function MUST NOT be included in the response. Each
special function MUST have a feature name and MAY have zero or more parameters as appropriate to each
special function.

4.2.2 Special Function: Get File filename.xml
The "Get File" is a generic special function which allows the master to obtain an XML response as identified
by the included filename.

The first parameter (for example, filename.xml) MUST be included, and identifies the nature of the data that
will be returned by the EGM when the master sends this special function.

Optional parameters may be included as appropriate to the special function.

Upon receipt of this special function, the EGM MUST acknowledge it with a correctly formatted 0x84 IACR.
Once the EGM is finished, the master may then retrieve the listing by sending a 0x03 LARQ command. The
EGM should respond with a 0x83 LARR command containing the requested data.

4.2.2.1 Get File AuthenticationResponse.xml %%SHA1_HMAC%%

All EGMs MUST include the "Get File" feature with the parameters AuthenticationResponse.xml and
%%SHA1_HMAC%% in the response to the Get Special Functions command. This specific form of the "Get File"
special function is used by the master to obtain the authentication results for all EGM components using a

GSA GAT Protocol Chapter 4
V4.1 Special Functions

Page 22 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

single request. Only components that can be authenticated using the SHA-1 and SHA-1 HMAC algorithms
may be included in the response.

The specific wildcard parameter %%SHA1_HMAC%% MUST be included so the master may optionally provide a
SHA-1 HMAC key. If the master does not provide a key (i.e wildcard replaced with "(none)"), the EGM
MUST authenticate each component using the SHA-1 algorithm, not SHA-1 HMAC with a NULL or zero key.
If the master does provide a key, the EGM MUST authenticate each component using the SHA-1 HMAC
algorithm.

Once the EGM indicates that the results are available, the master may then retrieve the listing by sending a
0x03 LARQ command. The EGM’s response MUST be XML formatted and conform to the following
definition (See Appendix B for more details):

Figure 4.1 Components Definition Diagram

The EGM’s response is a list of all components that were authenticated, along with the SHA-1 or SHA-1
HMAC authentication result for each component. This list MUST include, at a minimum, all EGM control
programs and data as required by the jurisdiction. The EGM MAY include additional components, but all
returned components MUST be authenticated using the SHA-1 or SHA-1 HMAC algorithm.

Authentication MUST be performed at the component level, not as a single result for all control programs and
data, unless all control programs and data on an EGM are approved by the jurisdiction as a single unit, in
which case, all control programs and data MAY be identified as a single component of the EGM.

The GatExec attribute MUST be set to default for compatibility with this version of the GAT protocol.

The Name element for each component SHOULD be consistent with the naming convention used when
submitting the component to a regulator or testing agency for approval.

4.2.3 Special Function: Component name %%SHA1_HMAC%%
The "Component" special function identifies an individual component on an EGM that may be authenticated
using the SHA-1 and SHA-1 HMAC algorithms.

The "name" parameter MUST be included, and is used to identify the specific component that will be
authenticated by the EGM when the master sends this special function. The "name" MUST be consistent with
the naming convention used when submitting this component to a regulator or testing agency for approval.

The specific wildcard parameter "%%SHA1_HMAC%%" MUST be included so the master may optionally provide a
SHA-1 HMAC key. If the master does not provide a key (i.e wildcard replaced with "(none)"), the EGM
MUST use the SHA-1 algorithm, not SHA-1 HMAC with a NULL or zero key. If the master does provide a
key, the EGM MUST use the SHA-1 HMAC algorithm.

Once the EGM indicates that the results are available, the master may then retrieve the listing by sending a
0x03 LARQ command. The EGM’s response MUST be XML formatted and conform to the Components
definition specified in Section 4.2.2.1. It MUST include only one Component element, providing the SHA-1 or
SHA-1 HMAC authentication result as appropriate for the component named in the command.

GSA GAT Protocol Chapter 4
V4.1 Special Functions

Released: 2016/03/14 Page 23
© 2016 Gaming Standards Association (GSA)

The EGM MUST support a "Component" special function for each individual component that can be
authenticated using the "Get File AuthenticationResponse.xml" special function. The EGM MAY include
additional "Component" special functions, for example to authenticate sub-components or special groups of
components. Only components capable of being authenticated using the SHA-1 and SHA-1 HMAC
algorithms may be exposed using the "Component" special function.

4.2.4 Special Function: doVerification name algorithm parameters
The "doVerification" special function identifies an individual component on an EGM that may be verified
using a specified authentication algorithm. Additional parameters beyond the name of the component and the
algorithm may be used when salts, seeds, offsets, etc. are supported for an algorithm.

4.2.4.1 Component Name

The component "name" MUST be included in the "doVerification" command. The "name" identifies a
specific component that can be verified by the EGM. The "name" MUST be consistent with the naming
conventions used when submitting components to regulators or testing agencies for approval. The intent is for
the master to be able to use the "name" to identify a specific component of the EGM that was previously
approved for the manufacturer and EGM.

To help facilitate the identification of components, each "name" SHOULD be unique to the manufacturer and
product identified in the SpecialFunctions response. The version number and release number of the
component SHOULD be included in the component "name"—for example, "XYZ_OS_v1.2_r12". See
Section 4.2.1 for more details about the SpecialFunctions response.

When reporting components that represent the software for peripherals of an EGM—that is, note acceptors,
printers, etc.—the EGM SHOULD report the component "name" provided by the peripheral, not a
component "name" constructed by the EGM. The intent is for the master to be able to identify peripheral
components by "name" across all EGM manufacturers and products. For this reason, peripheral
manufacturers SHOULD adopt naming conventions that keep component "names" globally unique. For
example, peripheral manufacturers can use 3-character GSA-assigned manufacturer prefixes when
constructing component "names" to maintain uniqueness.

NOTE:
The maximum length of an authentication request in a 0x04 IACQ command is 250 bytes. Thus, the
practical limit for the length of a component "name" is significantly less than 250 bytes. The space
needed for the special function name, "algorithm", and additional "parameters" SHOULD be taken
into consideration by manufacturers when constructing component "names".

4.2.4.2 Algorithms & Parameters

An "algorithm" MUST always be included in the "doVerification" command. The "algorithm" identifies that
authentication algorithm that should be used to verify the component—for example, CRC32, SHA1, etc.

Additional "parameters" MAY be included in the "doVerification" command. The additional "parameters"
identify optional features of the "algorithm"—for example, seeds, salts, offsets, etc. Additional "parameters"
are always expressed as wildcards. See Section 4.1, Overview, for more information regarding wildcards.

The following table identifies the "algorithms" that MAY be supported by an EGM. The table also identifies
the additional "parameters" for those "algorithms" that MAY be supported by an EGM.

• When "doVerification" special functions are reported by an EGM, the EGM MUST only include
"algorithms" and "parameters" listed in this table.

GSA GAT Protocol Chapter 4
V4.1 Special Functions

Page 24 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

• When a particular "algorithm" is reported by an EGM, the EGM MUST only include "parameters"
listed in this table for that "algorithm".

• Other "algorithms" and "parameters" MUST NOT be reported by the EGM as part of
"doVerification" special functions.

An EGM MAY choose which "algorithms" to support. An EGM MAY also choose which additional
"parameters" for those "algorithms" to support. Unless specified otherwise, an EGM MAY choose to not
support any of the additional "parameters" for an "algorithm".

• When an EGM does support a particular "parameter" for a "doVerification" special function, the
EGM MUST include that "parameter" when it reports the special function to the master.

• When an EGM does not support a particular "parameter" for a "doVerification" special function, the
EGM MUST NOT include that "parameter" when it reports the special function to the master.

4.2.4.3 Constructing Requests

Even though an EGM may support a particular "parameter", the master does not have to use it. Unless
specified otherwise, the master MAY choose to not use a particular "parameter"; the master MAY replace any
additional "parameter" that it chooses not to use with "(none)". The value "(none)" indicates that no seed, salt,
key, or offset is provided. See Section 4.1, Overview, for more details on constructing special function
requests.

4.2.4.4 doVerification Examples

The following examples demonstrate how "doVerification" special functions should be reported by an EGM
and how the EGM should indicate which additional "parameters" are supported for a particular special
function.

<SpecialFunctions GatExec="default">
<Name>SuperSpinner</Name>
<Manufacturer>XYZ Manufacturing Company</Manufacturer>
<Function>

<Feature>doVerification</Feature>
<Parameter>ABC_idReader_v14_r5</Parameter>
<Parameter>CRC32</Parameter>
<Parameter>%%CRC32_seed%%</Parameter>
<Parameter>%%CRC32_start%%</Parameter>

Table 4.4 Algorithms and Additional Parameters EGM MAY Support

Algorithm Additional Parameters Description

CRC16 %%CRC16_seed%%

%%CRC16_start%%

%%CRC16_end%%

Seed value.

Starting offset.

Ending offset.

CRC32 %%CRC32_seed%%

%%CRC32_start%%

%%CRC32_end%%

Seed value.

Starting offset.

Ending offset.

SHA1_HMAC %%SHA1_HMAC%% Key value; MUST be included.

GSA GAT Protocol Chapter 4
V4.1 Special Functions

Released: 2016/03/14 Page 25
© 2016 Gaming Standards Association (GSA)

<Parameter>%%CRC32_end%%</Parameter>
</Function>
<Function>

<Feature>doVerification</Feature>
<Parameter>ABC_noteAcceptor_v1.2.34</Parameter>
<Parameter>CRC32</Parameter>
<Parameter>%%CRC32_seed%%</Parameter>

</Function>
<Function>

<Feature>doVerification</Feature>
<Parameter>ABC_printer_v21_r3</Parameter>
<Parameter>CRC32</Parameter>

</Function>
</SpecialFunctions>

For the first special function, all of the additional "parameters" for the CRC32 algorithm are supported by the
EGM. When using this special function, the master must include all of the additional "parameters" when
constructing a "doVerification" request—for example, "doVerification ABC_idReader_v14_r5 CRC32 123456
(none) (none)".

For the second special function, only a seed value is supported by the EGM. When using this special function,
the master must only include the seed value when constructing a "doVerification" request—for example,
"doVerification ABC_noteAcceptor_v1.2.34 CRC32 123456".

And, for the last special function, no additional "parameters" at all are supported by the EGM. When using
this special function, the master must not include any additional "parameters" when constructing a
"doVerification" request—for example, "doVerification ABC_printer_v21_r3 CRC32".

4.2.4.5 Using Offsets

When supported by an algorithm, offsets may be used to refine the portion of the component that should be
verified. Offsets can be used to identify a subset of the component that should be verified, as well as a starting
position from which the verification algorithm should wrap around.

When zero-based buffer indexing is used by an implementation, the starting offset identifies the first byte to be
included in the calculation. The ending offset identifies the byte at which the calculation stops; that byte is not
included in the calculation. If the ending offset is less than or equal to the starting offset, the algorithm wraps
around.

For example, to verify the final 6 bytes of the 10-byte buffer containing the ASCII string "HJKLMNPQRS",
the starting offset should be set to 4 and the ending offset should be set to 0 (or 10). The buffer to hash would
be "MNPQRS".

Correction in v4.1

GSA GAT Protocol Chapter 4
V4.1 Special Functions

Page 26 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

Figure 4.2 Verifying Final 6 Bytes of Buffer Containing "HJKLMNPQRS"

To verify the entire 10-byte buffer containing the ASCII string "HJKLMNPQRS" starting in the middle, the
starting offset and the ending offset should both be set to 5. The buffer to hash would be "NPQRSHJKLM".

Figure 4.3 Verifying Full 10-byte Buffer Containing "HJKLMNPQRS"

Certain algorithms may support a salt value. When supported by an algorithm, the salt value MUST be
prepended to the component buffer. The salt value MAYMUST NOT be padded or otherwise adjusted before
it is prepended to the component buffer whenunless required by the algorithm. The resulting salt value MUST
be hashed before any of the bytes from the component buffer regardless of any offsets.

For example, for the 10-byte buffer containing the ASCII string "HJKLMNPQRS", if the client system
specifies a 3-byte salt value that is equivalent to the ASCII string "TVW" (no padding or other adjustments
required) with a starting offset and an ending offset 4, then the entire 13-byte buffer to hash would be
"TVWMNPQRSHJKL".

4.2.4.6 Using the SHA1_HMAC Algorithm

When the SHA1_HMAC algorithm is specified, if the master does not provide a key—that is, the
%%SHA1_HMAC%% wildcard is replaced with "(none)"—the EGM MUST use the SHA-1 algorithm, not
the SHA-1 HMAC algorithm with a NULL or zero key. If the master does provide a key, the EGM MUST use
the SHA-1 HMAC algorithm.

4.2.4.7 Reporting Results

Once the EGM indicates that the results of a "doVerification" request are available, the master may retrieve the
results by sending a 0x03 LARQ command. The EGM’s response MUST be XML formatted and MUST
conform to the Components XML schema definition specified in Section 4.2.2.1. The response MUST include
only one "Component" sub-element. That sub-element MUST provide the verification result for the
component named in the "doVerification" command.

GSA GAT Protocol Chapter 5
V4.1 Operational Scenarios

Released: 2016/03/14 Page 27
© 2016 Gaming Standards Association (GSA)

Chapter 5

Operational Scenarios

GSA GAT Protocol Chapter 5
V4.1 Operational Scenarios

Page 28 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

5.1 Sample Get Special Functions request
Here is a sample communication session where the master makes a request of the supported special functions:

Here is a sample communication session where an EGM reports its list of supported special functions:

Table 5.1 0x04 – IACQ

Field Hex Value Description

Command 04 Initiate Authentication Calculation Query.

Length 1B 27 bytes.

Authentication
Level

BA Special function designator.

Authentication
Parameter

00 Special function designator.

47 65 74 20 53
70 65 63 69 61
6C 20 46 75 6E
63 74 69 6F 6E

73

"Get Special Functions" special function.

CRC 2B 54 16-bit CRC.

Table 5.2 0x84 – IACR

Field Hex Value Description

Command 84 Initiate Authentication Calculation Response.

Length 05 5 bytes.

Status 03 Request acknowledged and special function started.

CRC B8 72 16-bit CRC.

Table 5.3 0x03 – LARQ

Field Hex Value Description

Command 03 Last Authentication Results Query.

Length 07 7 bytes.

Data Format 02 XML format requested.

Frame Number 00 01 Request the 1st frame of data.

CRC 74 01 16-bit CRC.

GSA GAT Protocol Chapter 5
V4.1 Operational Scenarios

Released: 2016/03/14 Page 29
© 2016 Gaming Standards Association (GSA)

5.1.1 Example Get Special Functions Response

<?xml version="1.0"?>
<SpecialFunctions GatExec="default">

<Function>
<Feature>Get File</Feature>
<Parameter>AuthenticationResponse.xml</Parameter>
<Parameter>%%SHA1_HMAC%%</Parameter>

</Function>
<Function>

<Feature>Component</Feature>
<Parameter>ABC_boot_123</Parameter>
<Parameter>%%SHA1_HMAC%%</Parameter>

</Function>
<Function>

<Feature>Component</Feature>
<Parameter>ABC_os_345.pkg</Parameter>
<Parameter>%%SHA1_HMAC%%</Parameter>

</Function>
<Function>

<Feature>Component</Feature>
<Parameter>ABC_game_789_012.pkg</Parameter>
<Parameter>%%SHA1_HMAC%%</Parameter>

</Function>
</SpecialFunctions>

Table 5.4 0x83 LARR

Field Hex Value Description

Command 83 Last Authentication Results Response.

Length Up to FF Total length of command.

Status Data 00 No error, this is not the last frame.

Frame Number 00 01 Frame number 1.

Data First frame of XML special functions list (up to 248 bytes).

See Section 5.1.1, Example Get Special Functions Response.

CRC 00 00 – FF FF 16-bit CRC.

GSA GAT Protocol Chapter 5
V4.1 Operational Scenarios

Page 30 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

5.2 Example All Components Authentication
Request

Here is a sample communication session where the master makes a request for the EGM to authenticate all
components:

Table 5.5 0x04 IACQ

Field Hex Value Description

Command 04 Initiate Authentication Calculation Query.

Length 32 50 bytes.

Authentication
Level

BA Special function designator.

Authentication
Parameter

00 Special function designator.

47 65 74 20 46
69 6C 65 09 41
75 74 68 65 6E
74 69 63 61 74
69 6F 6E 52 65
73 70 6F 6E 73
65 2E 78 6D 6C
09 31 32 33 34

41 42 43 44

"Get File<09>AuthenticationResponse.xml<09>1234ABCD"
special function.

CRC F3 4B 16-bit CRC.

Table 5.6 0x84 IACR

Field Hex Value Description

Command 84 Initiate Authentication Calculation Response

Length 05 5 bytes

Status 03 Request acknowledged and special function started.

CRC B8 72 16-bit CRC

GSA GAT Protocol Chapter 5
V4.1 Operational Scenarios

Released: 2016/03/14 Page 31
© 2016 Gaming Standards Association (GSA)

Here is a sample communication session where an EGM reports the authentication results for all components:

5.2.1 Example All Components Authentication Response

<?xml version="1.0"?>
<Components GatExec="default">

<Game>
<Name>ABC</Name>
<Manufacturer>A Better Company</Manufacturer>
<Component>

<Name>ABC_boot_123</Name>
<Checksum>0833B58888612D2A37829F44B58A63FF32933FFF</Checksum>

</Component>
<Component>

<Name>ABC_os_345.pkg</Name>
<Checksum>AEC231D3EDF4D338F1F81DBAA98742A4D6278ECB</Checksum>

</Component>
<Component>

<Name>ABC_game456_789_012.pkg</Name>
<Checksum>377938A82F5DEA976D86119C1CD5B65EE9CE2413</Checksum>

</Component>
</Game>

</Components>

Table 5.7 0x03 LARQ

Field Hex Value Description

Command 03 Last Authentication Results Query.

Length 07 7 bytes.

Data Format 02 XML format requested.

Frame Number 00 01 Request the 1st frame of data.

CRC 74 01 16-bit CRC.

Table 5.8 0x83 LARR

Field Hex Value Description

Command 83 Last Authentication Results Response.

Length Up to FF Total length of command.

Status Data 00 No error, this is not the last frame.

Frame Number 00 01 Frame number 1.

Data First frame of XML authentication results (up to 248 bytes).

See Section 5.2.1, Example All Components Authentication Response.

CRC 00 00 - FF FF 16-bit CRC.

GSA GAT Protocol Chapter 5
V4.1 Operational Scenarios

Page 32 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

5.3 Example SHA-1 Authentication
Here is a sample communication session where the master makes a request for the EGM to perform a SHA-1
authentication for a "SHA1-Example" component:

The authentication calculation is based on a NIST example, where the "SHA1-Example" component
consists of the 3 ASCII bytes:

"abc" or

616263

CSRC Home > Groups > ST > Cryptographic Toolkit

EXAMPLE ALGORITHMS

http://csrc.nist.gov/groups/ST/toolkit/examples.html

http://csrc.nist.gov/groups/ST/toolkit/documents/Examples/SHA1.pdf

Table 5.9 0x04 – IACQ

Field Hex Value Description

Command 04 Initiate Authentication Calculation Query.

Length 23 35 bytes.

Authentication
Level

BA Special function designator.

Authentication
Parameter

00 Special function designator.

43 6F 6D 70 6F
6E 65 6E 74 09
53 48 41 31 2D
45 78 61 6D 70
6C 65 09 28 6E
6F 6E 65 29

"Component<09>SHA1-Example<09>(none)" special
function.

CRC B8 BC 16-bit CRC.

Table 5.10 0x84 IACR

Field Hex Value Description

Command 84 Initiate Authentication Calculation Response.

Length 05 5 bytes.

Status 03 Request acknowledged and special function started.

CRC B8 72 16-bit CRC.

http://csrc.nist.gov/groups/ST/toolkit/examples.html
http://csrc.nist.gov/groups/ST/toolkit/documents/Examples/SHA1.pdf

GSA GAT Protocol Chapter 5
V4.1 Operational Scenarios

Released: 2016/03/14 Page 33
© 2016 Gaming Standards Association (GSA)

Here is a sample communication session where an EGM reports the authentication result for the component:

5.3.1 Example SHA-1 Response
<?xml version="1.0"?>
<Components GatExec="default">

<Game>
<Name>ABC</Name>
<Manufacturer>A Better Company</Manufacturer>
<Component>

<Name>SHA1-Example</Name>
<Checksum>A9993E364706816ABA3E25717850C26C9CD0D89D</Checksum>

</Component>
</Game>

</Components>

Table 5.11 0x03 LARQ

Field Hex Value Description

Command 03 Last Authentication Results Query.

Length 07 7 bytes.

Data Format 02 XML format requested.

Frame Number 00 01 Request the 1st frame of data.

CRC 74 01 16-bit CRC.

Table 5.12 0x83 LARR

Field Hex Value Description

Command 83 Last Authentication Results Response.

Length Up to FF Total length of command.

Status Data 00 No error, this is not the last frame.

Frame Number 00 01 Frame number 1.

Data First frame of XML authentication results (up to 248 bytes).

See Section 5.3.1, Example SHA-1 Response.

CRC 0000 – FFFF 16-bit CRC.

GSA GAT Protocol Chapter 5
V4.1 Operational Scenarios

Page 34 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

5.4 Example SHA-1 HMAC Authentication

Here is a sample communication session where the master makes a request for the EGM to perform a SHA-1
HMAC authentication for a "SHA1-HMAC-Example" component:

The authentication calculation is based on a NIST example, where the "SHA1-HMAC-Example"
component consists of the 34 ASCII bytes:

"Sample message for keylen<blocklen" or

5361 6D706C65 206D6573

73616765 20666F72 206B6579 6C656E3C 626C6F63 6B6C656E

And where the following 20-byte key is used:

00010203 04050607 08090A0B 0C0D0E0F 10111213

Correction in v4.1

CSRC Home > Groups > ST > Cryptographic Toolkit

EXAMPLE ALGORITHMS

http://csrc.nist.gov/groups/ST/toolkit/examples.html

http://csrc.nist.gov/groups/ST/toolkit/documents/Examples/HMAC_SHA1.pdf

Table 5.13 0x04 – IACQ

Field Hex Value Description

Command 04 Initiate Authentication Calculation Query.

Length 484A 7274 bytes.

Authentication
Level BA

Special function designator.

Authentication
Parameter

00 Special function designator.

43 6F 6D 70 6F

6E 65 6E 74 09

53 48 41 31 2D

48 4D 41 43 2D

45 78 61 6D 70

6C 65 09 30 30

30 31 30 32 30

33 30 34 30 35

30 36 30 37 30

38 30 39 30 41

30 42 30 43 30

44 30 45 30 46

31 30 31 31 31

32 31 33

"Component<09>SHA1-HMAC-
Example<09>000102030405060708090A0B0C0D0E0F10111
213" special function.

CRC 136A 3AB2 16-bit CRC.

http://csrc.nist.gov/groups/ST/toolkit/examples.html
http://csrc.nist.gov/groups/ST/toolkit/documents/Examples/HMAC_SHA1.pdf

GSA GAT Protocol Chapter 5
V4.1 Operational Scenarios

Released: 2016/03/14 Page 35
© 2016 Gaming Standards Association (GSA)

Here is a sample communication session where an EGM reports the authentication result for the component:

Table 5.14 0x84 IACR

Field Hex Value Description

Command 84 Initiate Authentication Calculation Response.

Length 05 5 bytes.

Status 03 Request acknowledged and special function started.

CRC B8 72 16-bit CRC.

Table 5.15 0x03 LARQ

Field Hex Value Description

Command 03 Last Authentication Results Query.

Length 07 7 bytes.

Data Format 02 XML format requested.

Frame Number 00 01 Request the 1st frame of data.

CRC 74 01 16-bit CRC.

Table 5.16 0x83 LARR

Field Hex Value Description

Command 83 Last Authentication Results Response.

Length Up to FF Total length of command.

Status Data 00 No error, this is not the last frame.

Frame Number 00 01 Frame number 1.

Data First frame of XML authentication results (up to 248 bytes).

See Section 5.4.1, Example SHA-1 HMAC Response.

CRC 0000 – FFFF 16-bit CRC.

GSA GAT Protocol Chapter 5
V4.1 Operational Scenarios

Page 36 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

5.4.1 Example SHA-1 HMAC Response
<?xml version="1.0"?>
<Components GatExec="default">

<Game>
<Name>ABC</Name>
<Manufacturer>A Better Company</Manufacturer>
<Component>

<Name>SHA1-HMAC-Example</Name>
<Checksum>4C99FF0CB1B31BD33F8431DBAF4D17FCD356A807</Checksum>

</Component>
</Game>

</Components>

GSA GAT Protocol Appendix A
V4.1 CRC Calculation

Released: 2016/03/14 Page 37
© 2016 Gaming Standards Association (GSA)

Appendix A

CRC Calculation

GSA GAT Protocol Appendix A
V4.1 CRC Calculation

Page 38 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

A.1 CRC Calculation in Java

Here is an implementation of the CRC calculation in Java:

/***

*

* Uses irreducible polynomial: 1 + x^2 + x^15 + x^16

*

***/

public class CRC16

{

 private static int[] table = {

 0x0000, 0xC0C1, 0xC181, 0x0140, 0xC301, 0x03C0, 0x0280, 0xC241,

 0xC601, 0x06C0, 0x0780, 0xC741, 0x0500, 0xC5C1, 0xC481, 0x0440,

 0xCC01, 0x0CC0, 0x0D80, 0xCD41, 0x0F00, 0xCFC1, 0xCE81, 0x0E40,

 0x0A00, 0xCAC1, 0xCB81, 0x0B40, 0xC901, 0x09C0, 0x0880, 0xC841,

 0xD801, 0x18C0, 0x1980, 0xD941, 0x1B00, 0xDBC1, 0xDA81, 0x1A40,

 0x1E00, 0xDEC1, 0xDF81, 0x1F40, 0xDD01, 0x1DC0, 0x1C80, 0xDC41,

 0x1400, 0xD4C1, 0xD581, 0x1540, 0xD701, 0x17C0, 0x1680, 0xD641,

 0xD201, 0x12C0, 0x1380, 0xD341, 0x1100, 0xD1C1, 0xD081, 0x1040,

 0xF001, 0x30C0, 0x3180, 0xF141, 0x3300, 0xF3C1, 0xF281, 0x3240,

 0x3600, 0xF6C1, 0xF781, 0x3740, 0xF501, 0x35C0, 0x3480, 0xF441,

 0x3C00, 0xFCC1, 0xFD81, 0x3D40, 0xFF01, 0x3FC0, 0x3E80, 0xFE41,

 0xFA01, 0x3AC0, 0x3B80, 0xFB41, 0x3900, 0xF9C1, 0xF881, 0x3840,

 0x2800, 0xE8C1, 0xE981, 0x2940, 0xEB01, 0x2BC0, 0x2A80, 0xEA41,

 0xEE01, 0x2EC0, 0x2F80, 0xEF41, 0x2D00, 0xEDC1, 0xEC81, 0x2C40,

 0xE401, 0x24C0, 0x2580, 0xE541, 0x2700, 0xE7C1, 0xE681, 0x2640,

 0x2200, 0xE2C1, 0xE381, 0x2340, 0xE101, 0x21C0, 0x2080, 0xE041,

 0xA001, 0x60C0, 0x6180, 0xA141, 0x6300, 0xA3C1, 0xA281, 0x6240,

 0x6600, 0xA6C1, 0xA781, 0x6740, 0xA501, 0x65C0, 0x6480, 0xA441,

 0x6C00, 0xACC1, 0xAD81, 0x6D40, 0xAF01, 0x6FC0, 0x6E80, 0xAE41,

 0xAA01, 0x6AC0, 0x6B80, 0xAB41, 0x6900, 0xA9C1, 0xA881, 0x6840,

 0x7800, 0xB8C1, 0xB981, 0x7940, 0xBB01, 0x7BC0, 0x7A80, 0xBA41,

 0xBE01, 0x7EC0, 0x7F80, 0xBF41, 0x7D00, 0xBDC1, 0xBC81, 0x7C40,

 0xB401, 0x74C0, 0x7580, 0xB541, 0x7700, 0xB7C1, 0xB681, 0x7640,

 0x7200, 0xB2C1, 0xB381, 0x7340, 0xB101, 0x71C0, 0x7080, 0xB041,

 0x5000, 0x90C1, 0x9181, 0x5140, 0x9301, 0x53C0, 0x5280, 0x9241,

 0x9601, 0x56C0, 0x5780, 0x9741, 0x5500, 0x95C1, 0x9481, 0x5440,

 0x9C01, 0x5CC0, 0x5D80, 0x9D41, 0x5F00, 0x9FC1, 0x9E81, 0x5E40,

 0x5A00, 0x9AC1, 0x9B81, 0x5B40, 0x9901, 0x59C0, 0x5880, 0x9841,

 0x8801, 0x48C0, 0x4980, 0x8941, 0x4B00, 0x8BC1, 0x8A81, 0x4A40,

 0x4E00, 0x8EC1, 0x8F81, 0x4F40, 0x8D01, 0x4DC0, 0x4C80, 0x8C41,

 0x4400, 0x84C1, 0x8581, 0x4540, 0x8701, 0x47C0, 0x4680, 0x8641,

 0x8201, 0x42C0, 0x4380, 0x8341, 0x4100, 0x81C1, 0x8081, 0x4040,

 };

 public static int hash(byte[] bytes)

 {

 int crc = 0xFFFF; // See Section 3.1 of SVC protocol spec

Correction in v4.1

GSA GAT Protocol Appendix A
V4.1 CRC Calculation

Released: 2016/03/14 Page 39
© 2016 Gaming Standards Association (GSA)

 for (byte b : bytes) {

 crc = (crc >>> 8) ^ table[(crc ^ b) & 0xff];

 }

 return crc;

 }

}

public class crc

{

private static int[] table =
{

0x0000, 0xC0C1, 0xC181, 0x0140, 0xC301, 0x03C0, 0x0280, 0xC241,
0xC601, 0x06C0, 0x0780, 0xC741, 0x0500, 0xC5C1, 0xC481, 0x0440,
0xCC01, 0x0CC0, 0x0D80, 0xCD41, 0x0F00, 0xCFC1, 0xCE81, 0x0E40,
0x0A00, 0xCAC1, 0xCB81, 0x0B40, 0xC901, 0x09C0, 0x0880, 0xC841,
0xD801, 0x18C0, 0x1980, 0xD941, 0x1B00, 0xDBC1, 0xDA81, 0x1A40,
0x1E00, 0xDEC1, 0xDF81, 0x1F40, 0xDD01, 0x1DC0, 0x1C80, 0xDC41,
0x1400, 0xD4C1, 0xD581, 0x1540, 0xD701, 0x17C0, 0x1680, 0xD641,
0xD201, 0x12C0, 0x1380, 0xD341, 0x1100, 0xD1C1, 0xD081, 0x1040,
0xF001, 0x30C0, 0x3180, 0xF141, 0x3300, 0xF3C1, 0xF281, 0x3240,
0x3600, 0xF6C1, 0xF781, 0x3740, 0xF501, 0x35C0, 0x3480, 0xF441,
0x3C00, 0xFCC1, 0xFD81, 0x3D40, 0xFF01, 0x3FC0, 0x3E80, 0xFE41,
0xFA01, 0x3AC0, 0x3B80, 0xFB41, 0x3900, 0xF9C1, 0xF881, 0x3840,
0x2800, 0xE8C1, 0xE981, 0x2940, 0xEB01, 0x2BC0, 0x2A80, 0xEA41,
0xEE01, 0x2EC0, 0x2F80, 0xEF41, 0x2D00, 0xEDC1, 0xEC81, 0x2C40,
0xE401, 0x24C0, 0x2580, 0xE541, 0x2700, 0xE7C1, 0xE681, 0x2640,
0x2200, 0xE2C1, 0xE381, 0x2340, 0xE101, 0x21C0, 0x2080, 0xE041,
0xA001, 0x60C0, 0x6180, 0xA141, 0x6300, 0xA3C1, 0xA281, 0x6240,
0x6600, 0xA6C1, 0xA781, 0x6740, 0xA501, 0x65C0, 0x6480, 0xA441,
0x6C00, 0xACC1, 0xAD81, 0x6D40, 0xAF01, 0x6FC0, 0x6E80, 0xAE41,
0xAA01, 0x6AC0, 0x6B80, 0xAB41, 0x6900, 0xA9C1, 0xA881, 0x6840,
0x7800, 0xB8C1, 0xB981, 0x7940, 0xBB01, 0x7BC0, 0x7A80, 0xBA41,
0xBE01, 0x7EC0, 0x7F80, 0xBF41, 0x7D00, 0xBDC1, 0xBC81, 0x7C40,
0xB401, 0x74C0, 0x7580, 0xB541, 0x7700, 0xB7C1, 0xB681, 0x7640,
0x7200, 0xB2C1, 0xB381, 0x7340, 0xB101, 0x71C0, 0x7080, 0xB041,
0x5000, 0x90C1, 0x9181, 0x5140, 0x9301, 0x53C0, 0x5280, 0x9241,
0x9601, 0x56C0, 0x5780, 0x9741, 0x5500, 0x95C1, 0x9481, 0x5440,
0x9C01, 0x5CC0, 0x5D80, 0x9D41, 0x5F00, 0x9FC1, 0x9E81, 0x5E40,
0x5A00, 0x9AC1, 0x9B81, 0x5B40, 0x9901, 0x59C0, 0x5880, 0x9841,
0x8801, 0x48C0, 0x4980, 0x8941, 0x4B00, 0x8BC1, 0x8A81, 0x4A40,
0x4E00, 0x8EC1, 0x8F81, 0x4F40, 0x8D01, 0x4DC0, 0x4C80, 0x8C41,
0x4400, 0x84C1, 0x8581, 0x4540, 0x8701, 0x47C0, 0x4680, 0x8641,
0x8201, 0x42C0, 0x4380, 0x8341, 0x4100, 0x81C1, 0x8081, 0x4040,

};

public static int hash(int[] bytes)
{

int crc = 0xFFFF;
for (int b : bytes)
{

crc = (crc >>> 8) ^ table[(crc ^ b) & 0xff];
}
return crc;

};

public static void main(String args[])
{

int[] bytes = { 0x04,
 0x4A,
 0xBA,
 0x00,
 0x43, 0x6F, 0x6D, 0x70, 0x6F,
 0x6E, 0x65, 0x6E, 0x74, 0x09,
 0x53, 0x48, 0x41, 0x31, 0x2D,
 0x48, 0x4D, 0x41, 0x43, 0x2D,
 0x45, 0x78, 0x61, 0x6D, 0x70,
 0x6C, 0x65, 0x09, 0x30, 0x30,
 0x30, 0x31, 0x30, 0x32, 0x30,

GSA GAT Protocol Appendix A
V4.1 CRC Calculation

Page 40 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

 0x33, 0x30, 0x34, 0x30, 0x35,
 0x30, 0x36, 0x30, 0x37, 0x30,
 0x38, 0x30, 0x39, 0x30, 0x41,
 0x30, 0x42, 0x30, 0x43, 0x30,
 0x44, 0x30, 0x45, 0x30, 0x46,
 0x31, 0x30, 0x31, 0x31, 0x31,
 0x32, 0x31, 0x33 }; // Table 5.13 0x04 - IACQ
System.out.println(Integer.toHexString(hash(bytes)));

 }

}

Generated output:

6ab2

GSA GAT Protocol Appendix B
V4.1 Hashing Algorithms

Released: 2016/03/14 Page 41
© 2016 Gaming Standards Association (GSA)

Appendix B

XSD for SpecialFunctions

and Components

GSA GAT Protocol Appendix B
V4.1 Hashing Algorithms

Page 42 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

B.1 XSD
The following XML Schema Definition (XSD) identifies the proper syntax for the SpecialFunctions and
Components XML data structures.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"

attributeFormDefault="unqualified">
<!--GAT3 XML Structures.-->
<xs:element name="SpecialFunctions">

<xs:annotation>
<xs:documentation>List of special functions.</xs:documentation>

</xs:annotation>
<xs:complexType>

<xs:sequence>
<xs:element name="Name" type="xs:string" minOccurs="0"/>
<xs:element name="Manufacturer" type="xs:string" minOccurs="0"/>
<xs:element name="Function" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>
<xs:sequence>

<xs:element name="Feature" type="xs:string"/>
<xs:element name="Parameter" type="xs:string" minOccurs="0"

maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="GatExec" type="xs:string" use="optional" default="default"/>

</xs:complexType>
</xs:element>
<xs:element name="Components">

<xs:annotation>
<xs:documentation>List of components and signatures.</xs:documentation>

</xs:annotation>
<xs:complexType>

<xs:sequence>
<xs:element name="Game" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>
<xs:sequence>

<xs:element name="Name" type="xs:string"/>
<xs:element name="Manufacturer" type="xs:string"/>
<xs:element name="Component" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>
<xs:sequence>

<xs:element name="Name" type="xs:string"/>
<xs:element name="Checksum" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="GatExec" type="xs:string" use="optional" default="default"/>

</xs:complexType>
</xs:element>
<!--End of Schema.-->

</xs:schema>

END OF DOCUMENT

Released: 2016/03/14

Page 43
© 2016 Gaming Standards Association (GSA)

	GSA GAT Protocol V4.1
	Table of Contents
	I About This Document
	I.I Acknowledgements
	I.II Related Documents
	I.III Document Conventions
	I.III.I Indicating Requirements, Recommendations, and Options
	I.III.II Changes, Corrections, and Clarifications
	I.III.III Other Formatting Conventions

	I.IV Categorization of Standards

	Chapter 1 Introduction
	1.1 Overview

	Chapter 2 Physical Layer
	2.1 Physical Layer Between EGM and Master

	Chapter 3 Application Command Layer
	3.1 Overview
	3.2 Application Layer Format
	3.2.1 Byte Order
	3.2.2 Bit Order
	3.2.3 Transmission Order
	3.2.4 Data Formats
	3.2.5 Application Layer Frame

	3.3 Commands - Query / Response Pairs
	3.3.1 Status Query (0x01 SQ)
	3.3.2 Status Response (0x81 SR)
	3.3.3 Last Authentication Status Query (0x02 LASQ)
	3.3.4 Last Authentication Status Response (0x82 LASR)
	3.3.5 Last Authentication Results Query (0x03 LARQ)
	3.3.6 Last Authentication Results Response (0x83 LARR)
	3.3.7 Initiate Authentication Calculation Query (0x04 IACQ)
	3.3.8 Initiate Authentication Calculation Response (0x84 IACR)

	Chapter 4 Special Functions
	4.1 Overview
	4.2 Defined Special Functions
	4.2.1 Special Function: Get Special Functions
	4.2.2 Special Function: Get File filename.xml
	4.2.2.1 Get File AuthenticationResponse.xml %%SHA1_HMAC%%

	4.2.3 Special Function: Component name %%SHA1_HMAC%%
	4.2.4 Special Function: doVerification name algorithm parameters
	4.2.4.1 Component Name
	4.2.4.2 Algorithms & Parameters
	4.2.4.3 Constructing Requests
	4.2.4.4 doVerification Examples
	4.2.4.5 Using Offsets
	4.2.4.6 Using the SHA1_HMAC Algorithm
	4.2.4.7 Reporting Results

	Chapter 5 Operational Scenarios
	5.1 Sample Get Special Functions request
	5.1.1 Example Get Special Functions Response

	5.2 Example All Components Authentication Request
	5.2.1 Example All Components Authentication Response

	5.3 Example SHA-1 Authentication
	5.3.1 Example SHA-1 Response

	5.4 Example SHA-1 HMAC Authentication
	5.4.1 Example SHA-1 HMAC Response

	Appendix A CRC Calculation
	A.1 CRC Calculation in Java

	Appendix B XSD for SpecialFunctions and Components
	B.1 XSD

