GSA GAT PROTOCOL
V3.50.1
Game Authentication Terminal

GSA GAT Protocol v3.50.1, Document ID gsa-p0093.002.00
Released 2011/02/13, by Gaming Standards Association (GSA).

Patents and Intellectual Property

NOTE: The uset's attention is called to the possibility that compliance with this [standard/
specification] may require use of an invention covered by patent rights. By publication of this
[standard/specification], GSA takes no position with respect to the validity of any such patent rights
ot their impact on this [standard/specification]. Similatly, GSA takes no position with respect to the
terms or conditions under which such rights may be made available from the holder of any such rights.
Contact GSA for further information.

Trademarks and Copyright

Copyright © 2011 Gaming Standards Association (GSA). All rights reserved. All trademarks used
within this document are the property of their respective owners. Gaming Standards Association and
the puzzle-piece GSA logo are registered tradematks and/or trademarks of the Gaming Standards
Association.

This document may be copied in part or in full provided that ALL copies retain the copyright and any
other proprietary notices contained on the materials. NO material may be modified, edited or taken
out of context such that its use creates a false or misleading statement or impression as to the
positions, statements or actions of GSA.

GSA Contact Information

E-mail: sec@gamingstandards.com

WWW: http:/ /www.gamingstandards.com

GSA GAT Protocol
v3.50.1 Table of Contents

Table of Contents

I ADOUT This DOCUMIENT e et iii

I o g To 1 (=T (o =T o 0 T=T o1 PP iii

L I = P =T 0 T T o =T 0 iii

[L Yol Tq =T o) @Xa) o 1V7=T o) o] o L= iii

1.111.1 Indicating Requirements, Recommendations, and OPtioNScceviiiiiiiiiiiiiiiaiaann. iii

LTI Corrections and ClarifiCationsco oo ee e iii

LTI Other Formatting CoONVENTIONS. ...ttt ettt e e et e et eae e aane e eaneaas iv
Chapter 1

) e To 16 [ox « o] o 0N S 1

T A O 1Y =T YT 2
Chapter 2

PRYSICAl LAY EK ... et ettt et et ettt e e eaneeaas 3

2.1 Physical Layer Between EGM and MasSter..... ..ottt ittt et e e e e e e eaneeas 4
Chapter 3

ApPplicatioNn ComMMaAaNd LAy er ...ttt ettt e et e e e eeeaaanneeens 7

B0 B I @ Y VT 8

3.2 ApPlication Layer FOMMIALttt et ettt ettt ettt et et et e eae e e aneeeas 8

0t R = Y2 (= I @ T o =T N 8

0 P22 = | A @ T o [T PP 8

G B2 B I = U 1] 0 0T ES7=] [0 o T o [9

I T B - X = B 01 g o = L 9

3.2.5 Application Layer Frame e ettt e 10

3.3 Commands - QUEry / ReSPONSE PalilS. et aaae e 10

3.3.1 Status QUETY (OXOL SO - uuuuttnnt ettt ettt ettt ettt et et e et e e e e et 10

3.3.2 Status RESPONSE (OXBL SR) ..iiuuiiiiiiiii et e ettt et et e e e e e 11

3.3.3 Last Authentication Status Query (OX02 LASQ) ... uuiiiiniiii e eaneaaaneas 12

3.3.4 Last Authentication Status Response (0X82 LASR) ..ot 12

3.3.5 Last Authentication Results Query (OX03 LARQ) ... et e eaee e 13

3.3.6 Last Authentication Results Response (0OX83 LARR) ...ttt 13

3.3.7 Initiate Authentication Calculation Query (0X04 TACQ)t 14

3.3.8 Initiate Authentication Calculation Response (0X84 IACR)cvviiiiiiiiiiiiiiie i 15
Chapter 4

5] 0 7= Tox = 1 I o BT e 0] 17

N @ 1Y VY 18

4.2 Defined Special FUNCLIONS e e e ettt 20

4.2.1 Special Function: Get Special FUNCLIONS oo e 20

4.2.2 Special Function: Get File filename.Xmlo e 21

4.2.2.1 Get File AuthenticationResponse.xml %%SHAL HMACY%9%0cceviiiiiiiienninnannns 21

4.2.3 Special Function: Component name %%SHAL_HMACY0%0......ccveiieeiiiiieiiieieiaeenne 22
Chapter 5

(@] o 1= =1 Ao] T= LIRS0 =1 F- ol 0 1 23

5.1 Sample Get Special FUNCLIONS FEOUEST ...t aaeeas 24

5.1.1 Example Get Special FUNCLIONS RESPONSE. .. et ittt et eaeeas 25

5.2 Example All Components Authentication REQUESTot e 26

5.2.1 Example All Components Authentication RESPONSEcvieiiiiiiii i eens 27

5.3 Example SHA-1 AUthentiCationo e et 28

5.3.1 EXAmMPIe SHA-L RESPDONS . .. ettt ettt et et ettt et et e e e 29

5.4 Example SHA-1 HMAC AUTNENTICAtIONt 30

5.4.1 EXample SHA-L HMAC RESPONSE .. uuiiuietite ittt et e e e e e et e e e eaae e eaaneeaaneaaaneans 32

gsa-p0093.002.00 Released: 2011/02/13 Page i

© 2011 Gaming Standards Association (GSA)

GSA GAT Protocol
v3.50.1 Table of Contents

Appendix A
(08 = J @R OF-1 [U1 F=1 o [0 o TS 33
YA R O = OB O= (o | F=1 o Lo T o [N = V7= 34

Appendix B

XSD for SpecialFunctions and COMPONENTS. ...t 37
0] 5 PP 38
Page ii gsa-p0093.002.00 Released: 2011/02/13

© 2011 Gaming Standards Association (GSA)

GSA GAT Protocol
v3.50.1 About This Document

I About This Document

The GSA GAT Protocol is a communication standard used by regulators and operators to identify and
authenticate gaming software and firmware in the field.

LI Acknowledgements

The Gaming Standards Association expresses its appreciation to all members of the GAT committee (past and
present) as well as gaming regulators and others, for their significant contribution and dedication to the
creation of this standard.

LIl Related Documents
SVC Serial Protocol v1.0
http:/ /www.gamingstandards.com/pdfs/standards/SVC_r1.pdf

Game Authentication Terminal Program (GAT3) Requirements Document

http:/ /www.gamingstandards.com/pdfs/standards/GSA_GAT3_r1.pdf

EIA/TIA-232 (RS-232)

http:/ /www.tiaonline.org/standards/

[.11 Document Conventions

[.IIL.I - Indicating Requirements, Recommendations, and Options
Terms and phrases in this document that indicate requirements, recommendations, and options are used as
defined in the IETF RFC 2119.

In summary:

Requirements:
To indicate requirements, this document uses "MUST", "MUST NOT", "REQUIRED".

Recommendations:

To indicate recommendations, this document uses "SHOULD", "SHOULD NOT",
"RECOMMENDED".

Options:

To indicate options, this document uses "MAY" or "OPTIONAL".

LIILIL Corrections and Clarifications

A pale yellow banner identifies content that has been corrected or clarified since the last released version,
along with text that identifies in what version the changes were made. The following example shows how this
convention is used, and indicates that corrections were made in v3.50.1 to content.

gsa-p0093.002.00 Released: 2011/02/13 Page iii
© 2011 Gaming Standards Association (GSA)

http://www.gamingstandards.com/pdfs/standards/SVC_r1.pdf
http://www.gamingstandards.com/pdfs/standards/GSA_GAT3_r1.pdf
http://www.tiaonline.org/standards/

GSA GAT Protocol
v3.50.1 About This Document

Note that correction banners and the associated inserted and deleted text is highlighted only in the mark-up
PDF of released versions, and are provided only for changes made between the last released version and the
current released version. Correction indicators are not carried forward from version to version.

Corrections in v3.50.1

Lorem ipsum dolor sit amet, consectetur eenseetetar-adipiscing elit. Aliquam consectetur justo vel odio
consequat rutrum. Morbi magna neque, blandit a dictum nec, vestibulum ac velit. Donec ultrices imperdiet mi,
eget pharetra enim porttitor quis. Nam vestibulum massa eget augue consectetur condimentum tempus enim
pellentesque.

L.ILIT Other Formatting Conventions

* Blue text indicates an internal link or external hyperlink to a URL.

* Bold (other than in headings) or underlined text is used for emphasis, unless specifically indicated
otherwise.

» Italicized text (other than in headings) is used for terms being introduced and/or being defined.

* Courier New font is used to indicate code or pseudo code.

Page iv gsa-p0093.002.00 Released: 2011/02/13
© 2011 Gaming Standards Association (GSA)

GSA GAT Protocol Chapter 1
v3.50.1 Introduction

Chapter 1

Introduction

gsa-p0093.002.00 Released: 2011/02/13 Page 1
© 2011 Gaming Standards Association (GSA)

GSA GAT Protocol Chapter 1
v3.50.1 Introduction

1.1 Overview

GAT defines a communications protocol used, between a master and an EGM, to authenticate software and
firmware components within the EGM. Typically, a portable PC or a laptop is used for the role of the master.
EGMs and other devices can be used for the role of the EGM.

The GAT communication protocol is simple in order to reduce complexity of design, implementation, testing
and usage. Due to the simplicity of this protocol, a standard layered approach is not necessary. Only the
physical layer and the application layer command set are specified.

The GAT protocol and associated calculations are to be run on a properly functioning EGM. Any attempt to
use GAT while an EGM is in an error state, tilted, or otherwise malfunctioning is beyond the scope of this
standard.

The GAT protocol and associated calculations are designed for the purposes of verifying software content on
an EGM. Any attempt to use GAT for any other purpose, such as verifying jackpots, game history recall, and
so forth, is beyond the scope of this standard.

Page 2 gsa-p0093.002.00 Released: 2011/02/13
© 2011 Gaming Standards Association (GSA)

GSA GAT Protocol Chapter 2
v3.50.1 Physical Layer

Chapter 2

Physical Layer

gsa-p0093.002.00 Released: 2011/02/13 Page 3
© 2011 Gaming Standards Association (GSA)

GSA GAT Protocol

v3.50.1

Chapter 2
Physical Layer

2.1

Physical Layer Between EGM and Master

The physical layer between the EGM and the master is:

point-to-point
full duplex
no handshaking

3-wire (Tx/Rx/Gnd) RS232C

The default communication:

9600 baud with eight data bits

no parity

one stop bit

The master is typically a laptop PC and is generally assumed to provide a standard DE9 (commonly known as
a DBY) male connector (DE9M) configured as a DTE interface, as shown in Table 2.1.

Table 2.1 Pinout for DE9M Connector Configured as DTE

Pin Function

Pin 2 RX. Receives data.
Pin 3 TX. Transmits data.
Pin 5 GND. Signal ground.

The EGM MUST provide a connector suitable for connection to this typical master DE9M. There are three

options by which this may be accomplished:

1.

The EGM MAY provide a standard DE9 female connector (DE9F) configured as a DCE, as shown in
Table 2.2. The master may connect to the EGM using a standard RS-232 “straight-through” cable.

Table 2.2 Pinout for DE9F Connector Configured as DCE

Pin

Function

Pin 2

TX. Transmits data.

Pin 3

RX. Receives data.

Pin5

GND. Signal ground.

2. The EGM MAY provide a standard DE9 male connector (DE9M) configured as a DTE, as shown in
Table 2.1. The master may connect to the EGM using a standard RS-232 “null modem” cable.

The EGM MAY provide a non-standard connector. If a non-standard connector is provided, the
EGM manufacturer MUST clearly document the pinout for this connector, and MUST make available
a cable or adapter that mates to the EGM’s GAT connector on one end and has a standard DE9
female connector (DEIF) configured as a DCE, as shown in Table 2.2, on the other end. This cable
MUST NOT exceed 10 feet in length.

Page 4

gsa-p0093.002.00 Released: 2011/02/13

© 2011 Gaming Standards Association (GSA)

GSA GAT Protocol

Chapter 2
v3.50.1

Physical Layer

The EGM GAT connector MUST be located within a secure area of the EGM. It is recommended that the

GAT connector be located in an easily accessible location within the interior of the EGM cabinet and labeled
for easy identification.

NOTE:

This standard does not specify whether a dedicated physical port is (or is not) required for the EGM
GAT connector. This leaves the option open to the manufacturer as to whether port sharing is an
acceptable solution within the particular jurisdiction where it will be used. It is up to the manufacturer
to determine whether the jurisdiction will allow port sharing;

gsa-p0093.002.00 Released: 2011/02/13

Page 5
© 2011 Gaming Standards Association (GSA)

GSA GAT Protocol Chapter 2
v3.50.1 Physical Layer

Page 6 gsa-p0093.002.00 Released: 2011/02/13
© 2011 Gaming Standards Association (GSA)

GSA GAT Protocol Chapter 3
v3.50.1 Application Command Layer

Chapter 3
Application Command

Layer

gsa-p0093.002.00 Released: 2011/02/13 Page 7
© 2011 Gaming Standards Association (GSA)

GSA GAT Protocol Chapter 3
v3.50.1 Application Command Layer

3.1 Overview

Corrections in 3.50.1

At the application layer, the master sends a guery to the EGM and waits for the response before sending another
command. The EGM always responds to a query with a response. As a consequence no more than one query
/ response may be pending at the master / EGM side at any given time.

The EGM MUST validate the length and CRC, and then it MUST validate the command byte. The EGM
SHOULD NOT respond to paeketmessages with invalid length, CRC, or command bytes.

The Master MUST validate the length and CRC, and then it MUST validate the command byte. The master
SHOULD ignore paeketmessages with invalid length, CRC, or command bytes.

The following time-outs will be in effect:
1. The EGM MUST respond within 200ms of receiving a complete packetmessage from the master.

2. If the master does not receive a response to a request, the master SHOULD wait at least 225ms before
sending another request.

The recommended inter-byte timeout value is 5ms.

4. 1If the EGM has determined that the previously received byte was the last byte of a valid
paeketmessage, or 200ms have elapsed since the previously received byte, the EGM SHOULD treat
the next byte received as belonging to a new paeketmessage.

5. The master MUST wait at least 10ms upon receipt of a response before transmitting again.

3.2 Application Layer Format

3.2.1 Byte Order

The GAT protocol uses Big Endian (most significant byte first) byte ordering for all cases where multi-byte,
numeric information is conveyed by the GAT protocol unless another format is specifically stated (typically
through the use of the Data Format byte).

3.2.2 Bit Order

For bit-field parameters, bit 0 always refers to the least significant bit. Bit 7 always refers to the most significant
bit. The following table may be used to determine bit positions:

Table 3.1 Bit Positions (Sheet 1 of 2)

Bit Bit Mask Description
0 0x01 Least significant bit.
1 0x02 27 bit position.

2 0x04 3 bit position.

3 0x08 4™ it position.

Page 8 gsa-p0093.002.00 Released: 2011/02/13
© 2011 Gaming Standards Association (GSA)

GSA GAT Protocol
v3.50.1

Chapter 3
Application Command Layer

Table 3.1 Bit Positions (Sheet 2 of 2)

Bit Bit Mask Description
4 0x10 5% bit position.
5 0x20 6™ bit position.
6 0x40 7% bit position.
7 0x80 Most significant bit.
3.2.3 Transmission Order

The bytes of a message are transmitted from left to right—that is, command byte first and CRC bytes last. The
order of the bits within a byte follows the RS-232 specification of LSB (bit 0) first and MSB last. All bits of a
byte are transmitted before the next byte is started.

3.24 Data Formats

Corrections in v3.50.1

The following data formats are supported by the GAT protocol:

Binary:

Packed BCD:

HEX-ASCII:

ASCII:
XML:

Each byte represents a binary value between 0x00 through OxFF inclusive.

Each byte represents a decimal value between 00 and 99 inclusive, represented as
hexadeeimatbinary 0x00 through 0x99-inrelusive.

A hexadecimal string representation of a hexadeeimalbinary value. HexadeeimalBinary
values are converted to uppercase ASCII hexadecimal strings that fermanupperease-
ASCH-representatiorrof the hexadeeimatbinary values. Por-examplerthe-value

Ol 1. 5 R .

4

0123456789ABEBEF An cven number of nibbles (hexadecimal digits) MUST be included.
Only ASCII characters 0-9 (0x30 through 0x39) and A-F (0x41 through 0x46) MUST
be used. For example: the binary value 0x0123456789abcdef (or
0x0123456789ABCDEF) is represented as the string 0123456789 ABCDEF and is
transmitted as the bytes 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x306, 0x37, 0x38, 0x39,
0x41, 0x42, 0x43, 0x44, 0x45, 0x46. Sce Section 5.4, Example SHA-1 HMAC
Authentication, which documents a transmission that includes a 20-byte binary key
value.

An ASCII data string. May include control characters such as CR (0x0D) and LEF (0x0A).

A well-formed XML document conforming to XML version 1.0.

XML version 1.0 requires that XML processors MUST support UTF-8 and UTF-16
encodings of an XML document. Thus, implementations of the GAT protocol
MUST support UTF-8 and UTF-16 encodings for the XML data type. However,
since UTF-8 tends to create smaller document sizes than UTF-16, implementations
of this protocol SHOULD use UTF-8 encodings for XML documents. The GAT
protocol does not provide a mechanism for selecting the encoding of an XML
document. The default encoding is UTF-8.

gsa-p0093.002.00 Released: 2011/02/13 Page 9

© 2011 Gaming Standards Association (GSA)

GSA GAT Protocol
v3.50.1

Chapter 3
Application Command Layer

3.25 Application Layer Frame

Corrections in 3.50.1

Table 3.2 Frame Structure

Command Length Message Data CRC
1 byte 1 byte 0 to 251 bytes 2 bytes
binary binary (varies) binary

This frame consists of the following fields:

Table 3.3 Frame Field Descriptions

Field Description

Command This is a command byte that indicates the paeketmessage format and its purpose.
Transmitted first.

Length The total number of bytes in frame (including Command, Length, Message Data, and
CRC bytes). Note: The maximum paeketmessage length is restricted to 255 bytes.

Message Data This field contains any data relevant to the command. The data format depends on the
specific command.

CRC A CRC-16 checksum of the Command, Length, and Message Data fields. Each frame is

protected with a 16-bit Cyclic Redundant Check sequence. The CRC uses the industry
standard CRC-16 polynomial generator of x*16 + x™15 + x*2 + 1 starting with a seed of
OxFFFE See Appendix A for further details on correct implementation of this CRC.
Transmitted last.

3.3 Commands - Query / Response Pairs

Each query has one corresponding response. The appropriate matched response should be returned by the
EGM when a query is received and processed. The command byte for a response is the same as that of the
query, except the high bit is set (i.e. 0x02-0x82).

3.3.1 Status Query (0x01 SQ)
[Master & EGM] Request the current status information from the EGM.

Table 3.4 0x01 SQ Structure

Cmd = 0x01 SQ Length = 0x04 CRC
1 byte 1 byte 2 bytes
binary binary binary
Page 10 gsa-p0093.002.00 Released: 2011/02/13

© 2011 Gaming Standards Association (GSA)

GSA GAT Protocol
v3.50.1

Chapter 3
Application Command Layer

3.3.2

Table 3.5 0x81 SR Structure

Status Response (0x81 SR)

[EGM = Master] Return the current status information.

Cmd = 0x81 SR Length = 0x08 Version ID Status Datal | Data Format CRC
1 byte 1 byte 2 bytes 1 byte 1 byte 2 bytes
binary binary packed BCD | binary binary binary

Table 3.6 0x81 SR Fields

Field

Description

Version 1D

example,

Indicates the version of the GAT protocol supported by the EGM. The version is a
4-digit number, where the first byte is 2-digit major revision number and the second
byte is 2-digit minor revision number. The errata revision number is not included. For

0x03 0x50 indicates GAT version 3.50.0, 3.50.1, 3.50.2, and so on;
0x03 0x51 indicates GAT version 3.51.0, 3.51.1, 3.51.2, and so on; and,
0x04 0x01 indicates GAT version 4.1.0, 4.1.1, 4.1.2, etc.

Status Datal

General Status:

Bit 0: Calculation Status.
0 = Idle.

1 = Calculating;

Always set to 0.

Bit 1: Last Authentication Results.
0 = Not Available.
1 = Available.

Bit 2 & 3: See Table 3.7 for Current Calculation.

Bit 4 to 7: Reserved.

Data Format

Data formats supported:
0x00 = Reserved, do not use.
0x01 = Plain text format.

0x02 — XML format.

0x03 to OXFF — Reserved for future use.

gsa-p0093.002.00 Released: 2011/02/13

© 2011 Gaming Standards Association (GSA)

Page 11

GSA GAT Protocol

Chapter 3
v3.50.1

Application Command Layer

Table 3.7 0x81 Status Datal Field: Bit 2 & 3, Current Calculation

Bit3 |Bit2
Value | Value | Description
0 0 | Requested.
1 0 Calculating,
0 1 Finished.
1 1| Error, cannot complete or failed.
3.3.3 Last Authentication Status Query (0x02 LASQ)

[Master = EGM] Request the status of the last authentication performed by the EGM. Only the status of the
last completed authentication is returned.

Table 3.8 0x02 LASQ Structure

Cmd = 0x02 LASQ Length = 0x04 CRC
1 byte 1 byte 2 bytes
binary binary binary
3.34 Last Authentication Status Response (0x82 LASR)

[EGM = Master| Return the status of the last authentication result calculated by the EGM.

Table 3.9 0x82 LASR Structure

Cmd = 0x82 LASR Length = 0x09 Authentication Level | Time CRC
1 byte 1 byte 1 byte 4 bytes 2 bytes
binary binary binary binary binary

Table 3.10 0x82 LASR Fields

Field Description

Authentication Level Indicates the level or type of authentication that was calculated. A value of 0x01
refers to Level 1 Authentication, 0x02 refers to Level 2 Authentication, and so on.
A value of 0x00 indicates no authentication results are available. For this version of
the GAT protocol, an EGM MUST support levels 0xBA and 0x00. Other levels
MAY be defined in other versions of the GAT protocol and MAY be supported

by the EGM.

Time Time (in seconds) since last results were calculated. If no authentication results are
available, then a value of 0x00000000 is returned.

Page 12 gsa-p0093.002.00 Released: 2011/02/13

© 2011 Gaming Standards Association (GSA)

GSA GAT Protocol Chapter 3
v3.50.1 Application Command Layer

3.35 Last Authentication Results Query (0x03 LARQ)
[Master = EGM] Request the previous/cutrently available Authentication results.

Table 3.11 0x03 LARQ Structure

Cmd = 0x03 LARQ Length = Ox07 Data Format | Frame Number | CRC
1 byte 1 byte 1 byte 2 bytes 2 bytes
binary binary binary binary binary

Table 3.12 0x03 LARQ Fields

Field Description

Data Format The format of the data:

0x00 = Reserved, do not use.
0x01 = Plain text format.
0x02 = XML format.

0x03 to OXFF = Reserved for future use.

Frame Number This number, with the most significant byte first, is used to indicate the Data Frame
that should be returned as data in the Last Authentication Results Response (0x83
LARR). The frame number data is indexed from 1, so a value of 0 is illegal. The range
is large enough to handle a file containing up to 65535 frames.

NOTE:

It is important to note that this mechanism of accessing the authentication results is linear, not
random access. The rule exists in order to reduce any possible load or restrictions on the
implementation within the EGM. The implications of this are that for each result, the first frame
requested can only be frame 1. After that the master can only request either the firs? frame, frame #, or
frame #+17, where # was the previous frame requested. This results in a linear request process, with the
ability to reset back to the first frame, or request a retransmit of the current frame, or request that the
next frame be transmitted.

3.3.6 Last Authentication Results Response (0x83 LARR)

[EGM = Master| Return a data frame of the previous or currently available Authentication results.

Table 3.13 0x83 LARR Structure

Cmd = 0x83 LARR |Length = 0x07 to OxFF | Status Data | Frame Number Data CRC
1 byte 1 byte 1 byte 2 bytes 0 to 248 bytes | 2 bytes
binary binary binary binary (varies) binary
gsa-p0093.002.00 Released: 2011/02/13 Page 13

© 2011 Gaming Standards Association (GSA)

GSA GAT Protocol
v3.50.1

Chapter 3
Application Command Layer

Table 3.14 0x83 LARR Fields

Field

Description

Status Data

General Status:
Bit 0:Error Status.
0 = No errot.

1 = Error. (Note: Error would usually indicate either no data available, or an
invalid frame.)

Bit 1: Frame Status.
0 = Not Last Frame.

1 = Last Frame.

Frame Number

Used to indicate the frame, with the most significant byte first, that is being returned
in the Data field. MAY be set to frame 0 (0x00 0x00) when an error is being reported
(Bit 0 of the Status Data set to 1).

Data Contains requested Authentication information (formatted as requested). This
response is the mechanism used by the EGM to communicate the result of any
special function. See Chapter 4 and Chapter 5 for further discussion of the format for
authentication and special function responses.

NOTE:

Authentication Results are not available while an Authentication Calculation is in progress. If a 0x03
LARQ request is received while an Authentication Calculation is in progress, the EGM MUST return
an error to the master in the 0x83 LARR response, setting Bit 0 and Bit 1 of the Status Data to 1.

3.3.7 Initiate Authentication Calculation Query (0x04 IACQ)
[Master = EGM] Request that the EGM start authentication calculation.

Table 3.15 0x04 IACQ Structure

Cmd = 0x04 IACQ | Length = 0x05 to OxFF | Authentication Level | Authentication Parameter CRC

1 byte 1 byte 1 byte 0 to 250 bytes 2 bytes

binary binary binary HEX-ASCII binary
Page 14 gsa-p0093.002.00 Released: 2011/02/13

© 2011 Gaming Standards Association (GSA)

GSA GAT Protocol Chapter 3
v3.50.1 Application Command Layer

Table 3.16 0x04 IACQ Fields

Field Description

Authentication Level | Indicates the level or type of authentication calculation that should be returned. A
value of 0x01 refers to Level 1 Authentication, 0x02 refers to Level 2 Authentication,
and so on. A value of 0x00 is illegal. For this version of the GAT protocol, an EGM
MUST support level 0xBA. The EGM MUST return error code 0x04 if level 0x00 is
requested. Other levels MAY be defined in other versions of the GAT protocol and
MAY be supported by the EGM.

The special authentication level OxBA is used by the master to signal that the
Authentication Parameter field contains a special function command. In this case, the
Authentication Parameter field MUST have the first byte set to 0x00. See Chapter 4
and Chapter 5 for further discussion of special functions.

Authentication The Authentication Parameter value is used for some Authentication Levels. The

Parameter same value is used for all modules verified by an Authentication Level. If the value is
longer than required by an Authentication Level, it is truncated, the high order bytes
discarded.

The Authentication Parameter is represented in HEX-ASCII format.

If the Authentication Level is set to the special value OxBA, the first byte of the
Authentication Parameter field MUST be set to 0x00 while the remainder of the field
contains the special function. See Chapter 4 for details. The data format is specified
with each command.

NOTE:

If an Authentication Calculation is in progress when this command is received by the EGM, the EGM
MUST abort the calculation and start the new Authentication Calculation. Issuing a new
Authentication Calculation while the EGM is calculating is not recommended. The master can
determine the state of the EGM using the 0x01 SQ command.

3.3.8 Initiate Authentication Calculation Response (0x84 IACR)

Corrections in v3.50.1

[EGM = Master| Indicate that the EGM has received a 0x04 IACQ command. The EGM SHOULD maintain
the last 0x04 IACQ result for the master to retrieve for as long as that result is valid, even while the master is
disconnected. Whenever a new 0x04 IACQ request is received by the EGM, the EGM MUST overwrite any
previous results with the new authentication results. If an error occurred such that the IACQ request did not
result in new authentication results, the 0x84 IACR response MUST report the error and the EGM MAY
overwrite or otherwise discard the previous authentication results. In addition, the EGM SHOULD discard
the last 0x04 IACQ result whenever the EGM is reset or the set of supported calculations changes—for
example, due to a change to the set of components on the EGM. If the operator has placed the EGM in a
special GAT authentication mode in order to calculate authentication results, the EGM MAY also discard the
last result when the operator causes the EGM to exit its GAT authentication mode.

gsa-p0093.002.00 Released: 2011/02/13 Page 15
© 2011 Gaming Standards Association (GSA)

GSA GAT Protocol
v3.50.1

Chapter 3
Application Command Layer

Table 3.17 0x84 IACR Structure

Cmd = 0x84 IACR Length = 0x045 Status CRC
1 byte 1 byte 1 byte 2 bytes
binary binary binary binary

Table 3.18 0x84 IACR Fields

Field Description
Status Bit 0: ACK/NACK.
0 = Cannot Acknowledge.
1 = Acknowledged.
Bit 1: Calculation Started.
0 = Not started.
1 = Started.
Bit 2: Level Compliance Error.
0 = Valid Level.
1 = Invalid Level requested.
Page 16 gsa-p0093.002.00 Released: 2011/02/13

© 2011 Gaming Standards Association (GSA)

GSA GAT Protocol Chapter 4
v3.50.1 Special Functions

Chapter 4

Special Functions

gsa-p0093.002.00 Released: 2011/02/13 Page 17
© 2011 Gaming Standards Association (GSA)

GSA GAT Protocol Chapter 4
v3.50.1 Special Functions

4.1 Overview

Corrections in v3.50.1

The master may request the EGM to execute a number of special functions. This is accomplished by setting
the Authentication Level to 0xBA and providing the appropriately formatted command in the Authentication
Parameter field of an Initiate Authentication Calculation Query (0x04 IACQ). Results from the execution of a
special function are sent to the master from the EGM in the Last Authentication Results Response (0x83
LARR).

When formatting special function commands, the following rules MUST be observed:

1. Individual data elements within the command MUST be separated by the tab character (0x09). A tab
character MUST NOT precede the first data element. A tab character MUST NOT follow the last
data element.

2. The name of the special function MUST be the first data element in the command. The name of the
special function is contained in the Feature element of the response to the "Get Special Functions”
command.

3. Unless specified otherwise in the description of the special function, parameters of the special
function, if any, MUST follow the first data element in the same order as they are reported in the
response to the "Get Special Functions" command.

4. When a parameter of the special function specifies a wildcard, the master may replace the wildcard
with an appropriate corresponding value—for example, the matching value contained in the
SEEDS.INI configuration file used by the GAT3.exe program.

5. Wildcards MUST be constructed from a leading %% sentinel (two percent signs), a wildcard name, and
a trailing %% sentinel (two percent signs)—for example, %%SHA1_HMAC%%. The wildcard name MUST be
constructed using one or more valid ASCII characters in the range 0x20 to OX7E, excluding 0x25 (the
percent sign).

6. The master MUST provide an actual value for the wildcard. If there is no corresponding value for the
wildcard, the wildcard MUST be replaced by "(none)" (0x28 0xGE 0x6F 0x6E 0x65 0x29). If the
wildcard represents a seed, hash, offset, or HMAC key, the text string "(none)" MUST be interpreted
to mean "no seed, hash, offset, or key provided" and MUST NO'T be used as a seed, hash, offset, or
key.

7. Special Functions that call for an offset parameter, a salt parameter, a key parameter, or an
authentication hash parameter MUST provide those values in a HEX-ASCII data format (see Section
3.2.4, Data Formats, for more details). If the values are not in HEX-ASCII data format, the EGM
SHOULD respond to a 0x04 IACQ command containing such values with a 0x84 IACR command
containing status 0x00 and not execute the special function.

When the master issues the 0x04 IACQ command, the EGM responds with the Initiate Authentication
Calculation Response (0x84 IACR) command. The EGM MUST use the Status field of the 0x84 IACR to
indicate the state of the request. One of the following states in Table 4.1 MUST be reported by the EGMe:.

Page 18 gsa-p0093.002.00 Released: 2011/02/13
© 2011 Gaming Standards Association (GSA)

GSA GAT Protocol Chapter 4
v3.50.1 Special Functions

Table 4.1 0x84 IACR States

0x84 Response
Status Field State

0x00 Request not acknowledged—invalid Authentication Parameters detected. Special function
will not be executed.

0x01 Request acknowledged and special function will be executed.

0x03 Request acknowledged and special function started.

0x04

Request not acknowledged—invalid Authentication Level detected. Special function will
not be executed.

The master MUST be prepared to receive other states from the EGM. Any such states simply indicate that the
request could not be acknowledged (Bit 0 set to 0 or Bit 2 set to 1). The master MUST interpret other states as
if state 0x04 was reported (when Bit 2 is set to 1) or as if state 0x00 was reported (when Bit 2 is set to 0).

After the master issues an 0x04 IACQ containing a special function request, the master may use the Status
Query (0x01 SQ) command to determine if the results of the special function are ready. The EGM should use
the Status field of the Status Response (0x81 SR) to determine the state of the request. One of the following
states MUST be reported by the EGM:

Table 4.2 0x81 SR States

0x81 Response
Status Datal Field | States Description

0x00 Idle, Not Available, and Requested The special function request has been
received but has not yet been executed.

0x04 Idle, Not Available, and Finished No special function results are available from
the EGM. This is the initial state of the EGM
before any special function requests have
been executed.

0x06 Idle, Available, and Finished The special function has been completed and
the results are available.
0x09 Calculating, Not Available, and The special function is executing.
Calculating
0x0C Idle, Not Available, and Error The special function failed in some way. No

further information is available.

OxOE Idle, Available, and Error The special function failed in some way.
Information regarding the error is available.

The master MUST be prepared to receive other states from the EGM. Any such states are contradictory and/
or ambiguous. The master MUST interpret other states as if state 0x0C (Idle, Not Available, and Error) was
reported.

Once the EGM has indicated results are ready, the results may be obtained by the master through the use of
the Last Authentication Results Query (0x03 LARQ). The EGM should then respond with the 0x83 LARR
command and set the Data field to appropriate value.

gsa-p0093.002.00 Released: 2011/02/13 Page 19
© 2011 Gaming Standards Association (GSA)

GSA GAT Protocol Chapter 4
v3.50.1 Special Functions

The Data Format for the special function responses that are defined in this section is always XML. Thus, after
a special function that is defined in this section has been successfully executed by the EGM, the Data Format
of the 0x81 SR from the EGM MUST specify XML format (0x02). Likewise, when the master requests the
results of a special function that is defined in this section, the Data Format of the 0x03 LARQ from the master
MUST specify XML format (0x02). Other formats may be used for other types of functions and for reporting
errofs.

As described in Section 3.3.8, Initiate Authentication Calculation Response (0x84 IACR), the EGM SHOULD
maintain the last 0x04 IACQ result for the master to retrieve for as long as that result is valid, even while the
master is disconnected. Requesting a new special function MUST overwrite the previous results with the new
authentication results. If an error occurred such that the IACQ request did not result in new authentication
results, an error MUST be reported in the 0x84 IACR response and the EGM MAY overwrite or otherwise
discard the previous authentication results. The EGM SHOULD discard the last 0x04 IACQ result whenever
the EGM is reset or the set of supported special functions changes.

In the following sections, "<00>" is used to indicate an ASCII null character (byte value of 0x00) and "<09>"
is used to indicate an ASCII tab character (byte value of 0x09).

4.2 Defined Special Functions

The GAT process is primarily intended to facilitate compliance with jurisdictional requirements. For example,
Nevada requires an EGM to provide a method to authenticate all EGM control programs and data on demand
via an approved communication port and protocol. It is up to each manufacturer to determine which
components are included in these requirements. It is also up to each manufacturer to determine to what
granularity components may be authenticated. It is strongly recommended that the master be able to
authenticate components to the same level of granularity that they are submitted to the jurisdiction for
approval.

421 Special Function: Get Special Functions

Corrections in v3.50.1

All EGMs MUST support the "Get Special Functions" special function. To discover which special functions
an EGM supports, the master may send the following 0x04 IACQ:

Table 4.3 0x04 IACQ Structure for Get Special Functions

Cmd Length Authentication Level | Authentication Parameter (Data) CRC

0x04 0x1B 0xBA <00>Get Special Functions 0x2B54

Upon receipt of this special function, the EGM MUST acknowledge it with a correctly formatted 0x84 IACR.
Once the EGM indicates it is finished by returning a Status of 0x06 in a 0x81 SR, the master may then retrieve
the listing by sending a 0x03 LARQ command. The EGM should respond with a 0x83 LARR command
containing the supported special functions.

The response MUST be XML formatted and conform to the following definition (See Appendix B for more
details):

Page 20 gsa-p0093.002.00 Released: 2011/02/13
© 2011 Gaming Standards Association (GSA)

GSA GAT Protocol Chapter 4
v3.50.1 Special Functions

E sttvipites

SpecialFunctions
type |

FFeature

| bype | s string

i_ __FParameter
Tbye [xs:string "
B b TTTTTTTI !
0.«

The GatExec attribute MUST be set to default for GAF+3-56:0-compatibility with this version of the GAT
protocol. The original GAT3 protocol intended that this attribute could be set to the path of an executable
program on the master; and, the master would save the response in a file by the filename specified in the first

parameter, and then execute the program specified by GatExec. This capability is NOT supported by this
version of the GAT protocolGAF+3-56:0.

The EGM MUST return a list of all special functions that it supports, other than the "Get Special Functions"
special function. The "Get Special Functions" special function MUST NO'T be included in the response. Each
special function MUST have a feature name and MAY have zero or more parameters as appropriate to each
special function.

4.2.2 Special Function: Get File filename.xml

The "Get File" is a generic special function which allows the master to obtain an XML response as identified
by the included filename.

The first parameter (for example, Filename.xml) MUST be included, and identifies the nature of the data that
will be returned by the EGM when the master sends this special function.

Optional parameters may be included as appropriate to the special function.

Upon receipt of this special function, the EGM MUST acknowledge it with a correctly formatted 0x84 IACR.
Once the EGM is finished, the master may then retrieve the listing by sending a 0x03 LARQ command. The
EGM should respond with a 0x83 LARR command containing the requested data.

4221 Get File AuthenticationResponse.xml %%SHA1 HMAC%%

Corrections in v3.50.1

All EGMs MUST include the "Get File" feature with the parameters AuthenticationResponse.xml and
%%SHAL_HMACY%% in the response to the Get Special Functions command. This specific form of the "Get File"
special function is used by the master to obtain the authentication results for all EGM components using a
single request. Only components that can be authenticated using the SHA-1 and SHA-1 HMAC algorithms
may be included in the response.

The specific wildcard parameter %%SHA1_HMAC%% MUST be included so the master may optionally provide a
SHA-1 HMAC key. If the master does not provide a key (i.e wildcard replaced with "(none)"), the EGM
MUST authenticate each component using the SHA-1 algorithm, not SHA-1 HMAC with a NULL or zero key.
If the master does provide a key, the EGM MUST authenticate each component using the SHA-1 HMAC
algorithm.

Once the EGM indicates that the results are available, the master may then retrieve the listing by sending a
0x03 LARQ command. The EGM’s response MUST be XML formatted and conform to the following
definition (See Appendix B for more details):

gsa-p0093.002.00 Released: 2011/02/13 Page 21
© 2011 Gaming Standards Association (GSA)

GSA GAT Protocol Chapter 4
v3.50.1 Special Functions

E stteivutes

fame]
e 7

The EGM’s response is a list of all components that were authenticated, along with the SHA-1 or SHA-1
HMAC authentication result for each component. This list MUST include, at a minimum, all EGM control
programs and data as required by the jurisdiction. The EGM MAY include additional components, but all
returned components MUST be authenticated using the SHA-1 or SHA-1 HMAC algorithm.

Authentication MUST be performed at the component level, not as a single result for all control programs and
data, unless all control programs and data on an EGM are approved by the jurisdiction as a single unit, in
which case, all control programs and data MAY be identified as a single component of the EGM.

The GatExec attribute MUST be set to default for GAF+3-56-0-compatibility with this version of the GAT

protocol.

The Name element for each component SHOULD be consistent with the naming convention used when
submitting the component to a regulator or testing agency for approval.

4.2.3 Special Function: Component name %%SHA1_HMAC%%

The "Component” special function identifies an individual component on an EGM that may be authenticated
using the SHA-1 and SHA-1 HMAC algorithms.

The "name" parameter MUST be included, and is used to identify the specific component that will be
authenticated by the EGM when the master sends this special function. The "name" MUST be consistent with
the naming convention used when submitting this component to a regulator or testing agency for approval.

The specific wildcard parameter "%%SHAL_HMAC%%" MUST be included so the master may optionally provide a
SHA-1 HMAC key. If the master does not provide a key (i.e wildcard replaced with "(none)"), the EGM
MUST use the SHA-1 algorithm, not SHA-1 HMAC with a NULL or zero key. If the master does provide a
key, the EGM MUST use the SHA-1 HMAC algorithm.

Once the EGM indicates that the results are available, the master may then retrieve the listing by sending a
0x03 LARQ command. The EGM’s response MUST be XML formatted and conform to the Components
definition specified in Section 4.2.2.1. It MUST include only one Component element, providing the SHA-1 or
SHA-1 HMAC authentication result as appropriate for the component named in the command.

The EGM MUST support a "Component” special function for each individual component that can be
authenticated using the "Get File AuthenticationResponse.xml" special function. The EGM MAY include
additional "Component" special functions, for example to authenticate sub-components ot special groups of
components. Only components capable of being authenticated using the SHA-1 and SHA-1 HMAC
algorithms may be exposed using the "Component" special function.

Page 22 gsa-p0093.002.00 Released: 2011/02/13
© 2011 Gaming Standards Association (GSA)

GSA GAT Protocol Chapter 5
v3.50.1 Operational Scenarios

Chapter 5

Operational Scenarios

gsa-p0093.002.00 Released: 2011/02/13 Page 23
© 2011 Gaming Standards Association (GSA)

GSA GAT Protocol
v3.50.1

Chapter 5
Operational Scenarios

5.1

Sample Get Special Functions request

Here is a sample communication session where the master makes a request of the supported special functions:

Table 5.1 0x04 — IACQ

Field Hex Value Description
Command 04 Initiate Authentication Calculation Query.
Length 1B 27 bytes.
Authentication BA Special function designator.
Level
Authentication 00 Special function designator.
Parameter) . . .

47 65 74 20 53 | "Get Special Functions" special function.

70 65 63 69 61

6C 20 46 75 6E

63 74 69 6F 6E

73
CRC 2B 54 16-bit CRC.
Table 5.2 0x84 — IACR

Field Hex Value Description
Command 84 Initiate Authentication Calculation Response.
Length 05 5 bytes.
Status 03 Request acknowledged and special function started.
CRC B8 72 16-bit CRC.

Here is a sample communication session where an EGM reports its list of supported special functions:

Table 5.3 0x03 — LARQ

Field Hex Value Description
Command 03 Last Authentication Results Query.
Length 07 7 bytes.
Data Format 02 XML format requested.
Frame Number 0001 Request the 1% frame of data.
CRC 74 01 16-bit CRC.
Page 24 gsa-p0093.002.00 Released: 2011/02/13

© 2011 Gaming Standards Association (GSA)

GSA GAT Protocol
v3.50.1

Chapter 5
Operational Scenarios

Table 5.4 0x83 LARR

Field Hex Value Description

Command 83 Last Authentication Results Response.
Length Up to FF Total length of command.

Status Data 00 No error, this is not the last frame.
Frame Number 00 01 Frame number 1.

Data First frame of XML special functions list (up to 248 bytes).
See Section 5.1.1, Example Get Special Functions Response.
CRC 00 00 —FF FF | 16-bit CRC.
5.1.1 Example Get Special Functions Response

<?xml version="1.0"?>
<SpecialFunctions GatExec="default''>

<Function>

<Feature>Get File</Feature>

<Parameter>AuthenticationResponse.xml</Parameter>
<Parameter>%%SHA1_HMAC%%</Parameter>

</Function>
<Function>

<Feature>Component</Feature>
<Parameter>ABC_boot_123</Parameter>
<Parameter>%%SHA1_HMAC%%</Parameter>

</Function>
<Function>

<Feature>Component</Feature>
<Parameter>ABC_os_345.pkg</Parameter>
<Parameter>%%SHA1_HMAC%%</Parameter>

</Function>
<Function>

<Feature>Component</Feature>
<Parameter>ABC_game_789 012.pkg</Parameter>
<Parameter>%%SHA1l_ HMAC%%</Parameter>

</Function>

</SpecialFunctions>

gsa-p0093.002.00 Released: 2011/02/13

Page 25

© 2011 Gaming Standards Association (GSA)

GSA GAT Protocol
v3.50.1

Chapter 5
Operational Scenarios

5.2

Request

Example All Components Authentication

Here is a sample communication session where the master makes a request for the EGM to authenticate all

components:

Table 5.5 0x04 IACQ

Field Hex Value Description
Command 04 Initiate Authentication Calculation Query.
Length 32 50 bytes.
Authentication BA Special function designator.
Level
Authentication 00 Special function designator.
Parameter
4765 74 20 46 | "Get File<09>AuthenticationResponse.xml<09>1234ABCD"
69 6C 65 09 41 ial functi
75 74 68 65 6& | Special function.
74 69 63 61 74
69 6F 6E 52 65
73 70 6F 6E 73
65 2E 78 6D 6C
09 31 32 33 34
41 42 43 44
CRC F3 4B 16-bit CRC.
Table 5.6 0x84 IACR
Field Hex Value Description
Command 84 Initiate Authentication Calculation Response
Length 05 5 bytes
Status 03 Request acknowledged and special function started.
CRC B8 72 16-bit CRC
Page 26 gsa-p0093.002.00 Released: 2011/02/13

© 2011 Gaming Standards Association (GSA)

GSA GAT Protocol Chapter 5
v3.50.1 Operational Scenarios

Here is a sample communication session where an EGM reports the authentication results for all components:

Table 5.7 0x03 LARQ

Field Hex Value Description

Command 03 Last Authentication Results Query.
Length 07 7 bytes.

Data Format 02 XML format requested.

Frame Number 0001 Request the 1% frame of data.
CRC 74 01 16-bit CRC.

Table 5.8 0x83 LARR

Field Hex Value Description
Command 83 Last Authentication Results Response.
Length Up to FF Total length of command.
Status Data 00 No error, this is not the last frame.
Frame Number 0001 Frame number 1.
Data First frame of XML authentication results (up to 248 bytes).
See Section 5.2.1, Example All Components Authentication Response.
CRC 00 00 -FF FF | 16-bit CRC.
5.2.1 Example All Components Authentication Response

<?xml version="1.0"?>
<Components GatExec="default'>
<Game>
<Name>ABC</Name>
<Manufacturer>A Better Company</Manufacturer>
<Component>
<Name>ABC_boot_123</Name>
<Checksum>0833B58888612D2A37829F44B58A63FF32933FFF</Checksum>
</Component>
<Component>
<Name>ABC_os_345.pkg</Name>
<Checksum>AEC231D3EDF4D338F1F81DBAA98742A4D6278ECB</Checksum>
</Component>
<Component>
<Name>ABC_game456_789_012.pkg</Name>
<Checksum>377938A82F5DEA976D86119C1CD5B65EE9CE2413</Checksum>
</Component>
</Game>
</Components>

gsa-p0093.002.00 Released: 2011/02/13 Page 27
© 2011 Gaming Standards Association (GSA)

GSA GAT Protocol Chapter 5
v3.50.1 Operational Scenarios

5.3 Example SHA-1 Authentication

Here is a sample communication session where the master makes a request for the EGM to perform a SHA-1
authentication for a "SHA1-Example" component:

The authentication calculation is based on a NIST example, where the "SHA1-Example" component
consists of the 3 ASCII bytes:

"abc" or

616263

CSRC Home > Groups > ST > Cryptographic Toolkit

EXAMPLE ALGORITHMS

http://cste.nist.gov/groups/ST/ toolkit/ examples.html
http://cste.nist.gov/groups/ST/ toolkit/documents/Examples/SHA1.pdf

Table 5.9 0x04 — IACQ

Field Hex Value Description
Command 04 Initiate Authentication Calculation Query.
Length 23 35 bytes.
Authentication BA Special function designator.
Level
Authentication 00 Special function designator.
Parameter
43 6F 6D 70 6F | "Component<09>SHA1-Example<09>(none)" special
6E 65 6E 74 09 func
53 48 41 31 2p | HCHOR-
45 78 61 6D 70
6C 65 09 28 6E
6F 6E 65 29
CRC B8 BC 16-bit CRC.
Table 5.10 0x84 IACR
Field Hex Value Description
Command 84 Initiate Authentication Calculation Response.
Length 05 5 bytes.
Status 03 Request acknowledged and special function started.
CRC B8 72 16-bit CRC.
Page 28 gsa-p0093.002.00 Released: 2011/02/13

© 2011 Gaming Standards Association (GSA)

http://csrc.nist.gov/groups/ST/toolkit/examples.html
http://csrc.nist.gov/groups/ST/toolkit/documents/Examples/SHA1.pdf

GSA GAT Protocol Chapter 5
v3.50.1 Operational Scenarios

Here is a sample communication session where an EGM reports the authentication result for the component:

Table 5.11 0x03 LARQ

Field Hex Value Description

Command 03 Last Authentication Results Query.
Length 07 7 bytes.

Data Format 02 XML format requested.

Frame Number 00 01 Request the 1% frame of data.
CRC 74 01 16-bit CRC.

Table 5.12 0x83 LARR

Field Hex Value Description

Command 83 Last Authentication Results Response.

Length Up to FF Total length of command.

Status Data 00 No error, this is not the last frame.

Frame Number 00 01 Frame number 1.

Data First frame of XML authentication results (up to 248 bytes).
See Section 5.3.1, Example SHA-1 Response.

CRC 0000 — FFFF 16-bit CRC.

5.3.1 Example SHA-1 Response

<?xml version="1.0"?>
<Components GatExec="default'>
<Game>
<Name>ABC</Name>
<Manufacturer>A Better Company</Manufacturer>
<Component>
<Name>SHAl-Example</Name>
<Checksum>A9993E364706816ABA3E25717850C26C9CDOD89D</Checksum>
</Component>
</Game>
</Components>

gsa-p0093.002.00 Released: 2011/02/13 Page 29
© 2011 Gaming Standards Association (GSA)

GSA GAT Protocol
v3.50.1

Chapter 5
Operational Scenarios

5.4 Example SHA-1 HMAC Authentication

Here is a sample communication session where the master makes a request for the EGM to perform a SHA-1
HMAC authentication for a "SHA1-HMAC-Example" component:

The authentication calculation is based on a NIST example, where the "SHA1-HMAC-Example"
component consists of the 34 ASCII bytes:

"Sample message for keylen<blocklen" or
5361 6D706C65 206D6573
73616765 20666F72 206B6579 6C656E3C 626C6F63 6B6C656E

And where the following 20-byte key is used:
00010203 04050607 08090A0B 0CODOEOF 10111213

CSRC Home > Groups > ST > Cryptographic Toolkit
EXAMPLE ALGORITHMS

http://cste.nist.gov/groups/ST/ toolkit/ examples.html
http://cste.nist.gov/groups/ST/toolkit/documents/Examples/HMAC_SHAT1.pdf

Table 5.13 0x04 — IACQ

Field Hex Value Description
Command 04 Initiate Authentication Calculation Query.
Length 48 72 bytes.
Authentication BA Special function designator.
Level
Authentication 00 Special function designator.
Parameter
43 6F 6D 70 6F | "Component<09>SHA1-HMAC-
6E 65 6E 74 09 | Example<09>000102030405060708090A0BOCODOEOF10111
53 48 41 31 2D | 53w special function.
48 4D 41 43 2D
45 78 61 6D 70
6C 65 09 30 30
30 31 30 32 30
33 30 34 30 35
30 36 30 37 30
38 30 39 30 41
30 42 30 43 30
44 30 45 30 46
31 30 31 31 31
32 31 33
CRC 13 3A 16-bit CRC.
Page 30 gsa-p0093.002.00 Released: 2011/02/13

© 2011 Gaming Standards Association (GSA)

http://csrc.nist.gov/groups/ST/toolkit/examples.html
http://csrc.nist.gov/groups/ST/toolkit/documents/Examples/HMAC_SHA1.pdf

GSA GAT Protocol Chapter 5
v3.50.1 Operational Scenarios

Table 5.14 0x84 IACR

Field Hex Value Description

Command 84 Initiate Authentication Calculation Response.
Length 05 5 bytes.

Status 03 Request acknowledged and special function started.
CRC B8 72 16-bit CRC.

Here is a sample communication session where an EGM reports the authentication result for the component:

Table 5.15 0x03 LARQ

Field Hex Value Description

Command 03 Last Authentication Results Query.
Length 07 7 bytes.

Data Format 02 XML format requested.

Frame Number 00 01 Request the 1% frame of data.
CRC 74 01 16-bit CRC.

Table 5.16 0x83 LARR

Field Hex Value Description
Command 83 Last Authentication Results Response.
Length Up to FF Total length of command.
Status Data 00 No errort, this is not the last frame.
Frame Number 00 01 Frame number 1.
Data First frame of XML authentication results (up to 248 bytes).
See Section 5.4.1, Example SHA-1 HMAC Response.
CRC 0000 — FFFE 16-bit CRC.
gsa-p0093.002.00 Released: 2011/02/13 Page 31

© 2011 Gaming Standards Association (GSA)

GSA GAT Protocol Chapter 5
v3.50.1 Operational Scenarios

54.1 Example SHA-1 HMAC Response

<?xml version="1.0"?>
<Components GatExec="'default''>
<Game>
<Name>ABC</Name>
<Manufacturer>A Better Company</Manufacturer>
<Component>
<Name>SHA1-HMAC-Example</Name>
<Checksum>4C99FF0OCB1B31BD33F8431DBAF4D17FCD356A807</Checksum>
</Component>
</Game>
</Components>

Page 32 gsa-p0093.002.00 Released: 2011/02/13
© 2011 Gaming Standards Association (GSA)

GSA GAT Protocol Appendix A
v3.50.1 CRC Calculation

Appendix A

CRC Calculation

gsa-p0093.002.00 Released: 2011/02/13 Page 33
© 2011 Gaming Standards Association (GSA)

GSA GAT Protocol Appendix A
v3.50.1 CRC Calculation

A.1 CRC Calculation in Java

Corrections in v3.50.1

Here is an implementation of the CRC calculation in Java:

*
* Uses irreducible polynomial: 1 + x”2 + x5 + x"16
*

public class CRC16
{
private static int[] table = {
0x0000, OxCOC1, OxC181, 0x0140, OxC301, 0x03CO, 0x0280, 0xC241,
0xC601, 0x06C0O, 0x0780, O0xC741, 0x0500, OxC5C1, 0xC481, 0x0440,
0xCCO1, OxO0CCO, Ox0D80, O0xCD41, OxOF00, OxCFC1l, OxCE81, OxOE40,
Ox0A00, OxCAC1l, OxCB81, 0x0B40, 0xC901, 0x09CO, 0x0880, 0xC841,
0xD801, 0x18C0O, 0x1980, 0xD941, 0x1B0OO, OxDBC1l, OxDA81, 0x1A40,
Ox1E00, OxDEC1, OxDF81, O0x1F40, OxDD0O1l, 0x1DCO, 0x1C80, 0xDC41,
0x1400, 0xD4C1, OxD581, 0x1540, OxD701, 0x17CO, 0x1680, 0xD641,
0xD201, 0x12C0O, 0x1380, 0xD341, 0x1100, O0xD1C1, 0xD081, 0x1040,
OxFO01, 0x30C0, 0x3180, OxF141, 0x3300, OxF3Cl1l, OxF281, 0x3240,
0x3600, OxF6C1, OxF781, 0x3740, OxF501, 0x35CO, 0x3480, OxF441,
0x3C00, OxFCC1, OxFD81, 0x3D40, OxFFO01l, Ox3FCO, Ox3EB0, OxFE41,
OxFAO1, Ox3ACO, 0x3B80, OxFB41, 0x3900, OxF9Cl1l, OxF881, 0x3840,
0x2800, OxE8C1, OxE981, 0x2940, OxEBO1l, O0x2BCO, Ox2A80, OxEA41,
OXEEO1, Ox2ECO, Ox2F80, OxEF41, 0x2D00, OxEDC1l, OxXEC81, 0x2C40,
OxE401, 0x24C0, 0x2580, OxE541, 0x2700, OxE7C1l, OxE681, 0x2640,
0x2200, OxE2C1, OxE381, 0x2340, OxE101, 0x21CO, 0x2080, OxEO41,
OxA001, O0x60CO, 0x6180, O0xA141, 0x6300, OxA3Cl, OxA281, 0x6240,
0x6600, OxA6C1l, OxA781, 0x6740, OxA501, Ox65CO, 0x6480, O0xA441,
0x6C00, OxACC1l, OxAD81, 0x6D40, OxAFO01l, Ox6FCO, Ox6EB80, OxAE41,
OxAAO1l, Ox6ACO, 0Ox6B80, OxAB41, 0x6900, OxA9Cl, 0xA881, 0x6840,
0x7800, 0xB8C1, 0xB981, 0x7940, OxBBO1l, Ox7BCO, Ox7A80, OxBA41,
OxBEO1, Ox7ECO, Ox7F80, OxBF41, O0x7D00, OxBDC1l, OxBC81, 0x7C40,
0xB401, 0x74C0O, 0x7580, 0xB541, 0x7700, OxB7Cl, 0xB681, 0x7640,
0x7200, 0xB2C1, 0xB381, 0x7340, OxB101l, 0x71CO, 0x7080, 0xB0O41,
0x5000, 0x90C1, 0x9181, 0x5140, 0x9301, 0x53CO, 0x5280, 0x9241,
0x9601, 0x56C0, 0x5780, 0x9741, 0x5500, 0x95C1, 0x9481, 0x5440,
0x9C01, Ox5CCO, Ox5D80, 0x9D41, Ox5F00, Ox9FC1l, Ox9EB1, Ox5E40,
Ox5A00, Ox9AC1, 0x9B81, 0x5B40, 0x9901, 0x59CO, 0x5880, 0x9841,
0x8801, 0x48C0, 0x4980, 0x8941, 0x4B00, Ox8BC1l, OxB8A81, 0x4A40,
Ox4E00, Ox8EC1, Ox8F81, O0x4F40, 0x8D01, 0x4DCO, 0x4C80, 0x8C41,
0x4400, 0x84C1l, 0x8581, 0x4540, 0x8701, 0x47CO, 0x4680, 0x8641,
0x8201, 0x42C0, 0x4380, 0x8341, 0x4100, 0x81C1l, 0x8081, 0x4040,

public static int hash(byte[] bytes)
{

Page 34 gsa-p0093.002.00 Released: 2011/02/13
© 2011 Gaming Standards Association (GSA)

GSA GAT Protocol Appendix A
v3.50.1 CRC Calculation

int crc = OxFFFF; // See Section 3.1 of SVC protocol spec

for (byte b : bytes) {
crc = (crc >>> 8) ~ table[(crc ~ b) & Oxff];

}

return crc;

gsa-p0093.002.00 Released: 2011/02/13 Page 35

© 2011 Gaming Standards Association (GSA)

GSA GAT Protocol Appendix A
v3.50.1 CRC Calculation

Page 36 gsa-p0093.002.00 Released: 2011/02/13
© 2011 Gaming Standards Association (GSA)

GSA GAT Protocol Appendix B
v3.50.1 XSD for SpecialFunctions and Components

Appendix B
XSD for SpecialFunctions

and Components

gsa-p0093.002.00 Released: 2011/02/13 Page 37
© 2011 Gaming Standards Association (GSA)

GSA GAT Protocol Appendix B
v3.50.1 XSD for SpecialFunctions and Components

B.1 XSD

The following XML Schema Definition (XSD) identifies the proper syntax for the SpecialFunctions and
Components XML data structures.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="qualified"

attributeFormDefault=""unqualified'">
<I--GAT3 XML Structures.-->
<xs:element name="'SpecialFunctions'>
<xs:annotation>
<xs:documentation>List of special functions.</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="Function' minOccurs="0" maxOccurs="unbounded'>
<xs:complexType>
<Xs:sequence>
<xs:element name=""Feature" type="xs:string'/>
<xs:element name=""Parameter" type="'xs:string" minOccurs="0"
maxOccurs=""unbounded"/>
</Xs:sequence>
</xs:complexType>
</xs:element>
</Xs:sequence>
<xs:attribute name="GatExec" type=''xs:string" use="optional" default="default"/>
</xs:complexType>
</xs:element>
<xs:element name="'Components''>
<xs:annotation>
<xs:documentation>List of components and signatures.</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="Game"™ minOccurs="0" maxOccurs="unbounded'>
<xs:complexType>
<Xs:sequence>
<xs:element name=""Name' type=''xs:string"/>
<xs:element name="Manufacturer" type='xs:string'/>
<xs:element name="'Component" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<Xs:sequence>
<xs:element name=""Name' type=''xs:string"/>
<xs:element name=""Checksum™ type=''xs:string'/>
</Xs:sequence>
</xs:complexType>
</xs:element>
</Xs:sequence>
</xs:complexType>
</xs:element>
</Xs:sequence>
<xs:attribute name="GatExec" type=''xs:string" use="optional" default="default"/>
</xs:complexType>
</xs:element>
<!--End of Schema.-->
</xs:schema>

Page 38 gsa-p0093.002.00 Released: 2011/02/13
© 2011 Gaming Standards Association (GSA)

END OF DOCUMENT

Document ID: gsa-p0093.002.00
Released: 2011/02/13

GAMING STANDARDS

ASSOCIATION

Page 39
© 201 | Gaming Standards Association (GSA)

	GSA GAT Protocol v3.50.1
	Table of Contents
	I About This Document
	I.I Acknowledgements
	I.II Related Documents
	I.III Document Conventions
	I.III.I Indicating Requirements, Recommendations, and Options
	I.III.II Corrections and Clarifications
	I.III.III Other Formatting Conventions

	Chapter 1 Introduction
	1.1 Overview

	Chapter 2 Physical Layer
	2.1 Physical Layer Between EGM and Master

	Chapter 3 Application Command Layer
	3.1 Overview
	3.2 Application Layer Format
	3.2.1 Byte Order
	3.2.2 Bit Order
	3.2.3 Transmission Order
	3.2.4 Data Formats
	3.2.5 Application Layer Frame

	3.3 Commands - Query / Response Pairs
	3.3.1 Status Query (0x01 SQ)
	3.3.2 Status Response (0x81 SR)
	3.3.3 Last Authentication Status Query (0x02 LASQ)
	3.3.4 Last Authentication Status Response (0x82 LASR)
	3.3.5 Last Authentication Results Query (0x03 LARQ)
	3.3.6 Last Authentication Results Response (0x83 LARR)
	3.3.7 Initiate Authentication Calculation Query (0x04 IACQ)
	3.3.8 Initiate Authentication Calculation Response (0x84 IACR)

	Chapter 4 Special Functions
	4.1 Overview
	4.2 Defined Special Functions
	4.2.1 Special Function: Get Special Functions
	4.2.2 Special Function: Get File filename.xml
	4.2.2.1 Get File AuthenticationResponse.xml %%SHA1_HMAC%%

	4.2.3 Special Function: Component name %%SHA1_HMAC%%

	Chapter 5 Operational Scenarios
	5.1 Sample Get Special Functions request
	5.1.1 Example Get Special Functions Response

	5.2 Example All Components Authentication Request
	5.2.1 Example All Components Authentication Response

	5.3 Example SHA-1 Authentication
	5.3.1 Example SHA-1 Response

	5.4 Example SHA-1 HMAC Authentication
	5.4.1 Example SHA-1 HMAC Response

	Appendix A CRC Calculation
	A.1 CRC Calculation in Java

	Appendix B XSD for SpecialFunctions and Components
	B.1 XSD

