
Game Authentication Terminal 3

Requirements and Design

5. Implementation of GAT3

5.1. Basic philosophies

5.1.1. Co-opting by GAT3 of SVC Authentication Level 186

As detailed above, GAT3 needs to do many things that the SVC protocol doesn’t provide for directly. Thus, GAT3 is reserving a single Authentication Level code – decimal 186 – for its own use.

Because it is not believed that the SVC protocol is in use by any other organization at this time, and because of the relative weirdness of decimal 186, it is hoped that there will never be any kind of general conflict caused by that value being used by any other manufacturer that might use the SVC protocol for something other than GAT3 communications.

The number 186 was chosen because of its hexadecimal representation, BA, which we here at Bally thought amusing.

5.1.2. The use of XML in GAT3

In general, when GAT3 sends a request to a game, it looks at the file that comes back. If that file is an XML file, GAT3 will attempt to process that file according to rules that will be discussed shortly. If a file is not in XML format, GAT will simply store it and ignore it.

GAT3 is intended for use local to the game. That is, a person will be standing right there, connected to the game when GAT3 is used. However, the designers recognize the advantages of passing GAT3 messages over a network back to a host. By using XML in GAT3 the designers hope to make this dual use of GAT3 messages: local and to a server, less painful for the industry.

5.2. Starting up GAT3 – the “idle” state.

When you start GAT up, it looks like this:

[image: image1.png]7+ GAT-3 Terminal Progam

Timeout: 7 secands
AuthLevel 1 Gt Extended List

The Game repots that it can do these things:

Your

Logo

Here

The status line saying, “Timeout 7 seconds” indicate that the program has been running for seven seconds since it last had contact with a GAT-capable EGM. SVC Status Query commands are transmitted several times each second; if the GAT3 terminal is connected to a GAT-capable EGM, the display will look something like this.

[image: image2.png]‘Terminal Progam

Version 202 Status: IDLE Authertication Resuls: NOT AVAILABLE.

AuthLevel 1 Gt Extended List

The Game repots that it can do these things:

Your

Logo

Here

The information in the status line indicates a working connection between GAT3 and the EGM.

The various elements of the dialog box are described here:

The Setup button brings up a dialog box that allows for selection of the serial port to use. It also allows the operator to specify where GAT3 is supposed to store the files that are created from the information returned from the EGM in response to Initiate Authentication Calculation Query commands.

The logo area is filled with a 125 by 175 pixel LOGO.BMP file, which is co-located with the GAT executable. For the New Jersey implemention, the logo of the NJ-DGE is placed there; it is anticipated that various jurisdictions might enjoy doing the same.

The “Auth. Level 1” button is the legacy GAT button; press it and the program sends out an SVC Initiate Authentication Calculation Query with the Authentication Level set to one. The response that comes back is processed as described in the Legacy GAT section up above.

The “Get Extended List” button is how the GAT3 capabilities are accessed.

5.3. The “Get Extended List” button

When the “Get Extended List” button is pressed, GAT3 issues the “Get Special Functions” command to the EGM. The EGM responds with a list of things that it knows how to do. Those things are presented in the GAT3 dialog box so that the user can select them.

Here is a sample of what the results might be when the operator clicks the “Get Extended List” button:

[image: image3.png]‘Terminal Progam

Version 2,02 Status: IDLE Authentication Resuls: AVAILABLE

AuthLevel et Enended Lt]

The Game repots that it can do these things:

Changs Baud Rate 38400
Changs Baud Rate 115200

Gt Fle. Components sl

GetFle Melers.im

GetFle Enors.og
GetFie_AuthenticstionRiesponse.sml %7BallSesd1 %
Make Cofee.

When any of those commands are selected by being double-clicked, GAT3 sends the selected command back to the EGM. As each command is sent, GAT3 examines it to see if it is one of the commands for which special action can be taken. GAT3 knows what to do with the “Change Baud Rate” and “Get File” commands.

Otherwise, GAT3 just passes the command back to the game, and takes no special action. It does save the response file to the Initiate Authentication Response Query with a default name, and processes it as it would any file.

5.4. Special Commands that GAT3 understands

5.4.1. Change Baud Rate

GAT3 understands the “Change Baud Rate” command; after sending this command and getting back a response from the game, it will close and re-open its serial port using the new baud rate.

5.4.2. Get File

GAT3 also understands the “Get File” command. This command may have multiple parameters, but it always uses the first parameter as a file name. The response file will be saved in the response directory under that name. (Any path information will be ignored.)

5.4.3. Get Special Functions

There is always one additional command that GAT3 understands and will issue to a game: The “Get Special Functions” command. “Get Special Functions” is the command GAT3 issues to the game to get the list shown above.

5.4.4. %% Replacement

Any command can have embedded in it strings of the form seen above, “%%<something>%%. When GAT3 sends a command with one or more of those strings in it, GAT3 looks for a SEEDS.INI in the same folder as the GAT.EXE executable. It checks a section named “Seeds” for a key matching the <something> string inside the doubled percent signs.

If found, the value of that key replaces the entire %%<something>%% string. If the key is missing from the SEEDS.INI file, a value of “(none)” is used.

This provides a mechanism whereby individual field agent laptops can be customized with individual strings. Because there is only one “Seeds” section that must be shared by all manufacturers, it is suggested that each manufacturer prefix their seed codes with something like “Bally” or “IGT” or “Anchor” or whatever, in order to avoid the collisions that would occur if everybody chose to use the same word, like “Seed”.

5.4.5. Expansion commands

The “Make Coffee” command is one that is unknown to GAT3. If selected, GAT3 will simply send it back to the EGM. GAT3 expects a response file, which will be given a default name and processed as if it were any other response file, but other than that GAT3 will take no special action.

5.5. Getting specific: How the “Get Extended List” button click works.

5.5.1. Sending out the command

When that button is clicked, GAT3 puts together an Initiate Authentication Calculation Query command with an authentication level of 18610/BA16. When that command is issued, additional special GAT3 information goes into the Authentication Seed field.

The very first byte of the Authentication Seed field is reserved as a sub-command byte. At this point in time, only zero has been assigned,which indicates that the remainder of the Authentication Seed field is to be interpreted as a command.

In this particular case, the 27 hexadecimal bytes of the command are:

04

SVC Initiate Authentication Calculation Query
1B

Length of 27 bytes for the whole packet

BA

This is a co-opted “GAT3” command

00

Process remainder of seed as a “special command”

47 65 74 20

“Get “

53 70 65 63 69 61 6C 20
“Special “

46 75 6E 63 74 69 6F 6E 73
“Functions”

2B 54

CRC16 Checksum

Note that the string is not terminated with a zero character; the end of the string is implicity defined by the length of the packet.

C/C++ source code for the CRC16 checksum specified by the SVC Protocol is included in this package.

5.5.2. What comes back

The response to the “Get Special Functions” command is an XML file. The format of this file is of especial interest to game developers, because GAT3 will only be able to process the returned result if it matches this form precisely.

The response file that generated the list box sample seen above is seen below:

The features in italics are the ones that game developers will have to replace with their own specific commands. The rest of the file must be regarded as a template.

Note that every Function must have a single Feature, and that a function can have any number of parameters

5.6. Returning a function to the game.

When a Function is selected for transmittal back to the game, GAT3 builds an SVC Initiate Authentication Response Query with the authentication level set to 0xBA.

The first byte of the Authentication Seed is set to zero.

The Function’s Feature text is then appended.

The various Parameters will follow, in the order they appear in the XML file. ASCII <tab> characters will be used as separators; the command line ends, however, with the last character of the final Parameter.

Thus, the first Function up above would be returned to the game in the Authentication Seed field as

“Change Baud Rate<tab>38400”.

The final function up above would be returned to the game as

“Make Coffee”

5.7. How EGM response files are processed by GAT3

Every file that comes back from the EGM in response to a GAT3 command is examined by GAT3. There are five possible classes of response:

5.7.1. The response file is not an XML file

In this case, GAT3 does nothing except save the file in the response folder.

5.7.2. The response is an XML file, but there is no GatExec= attribute

GAT3 does nothing except save the file in the reponse folder.

5.7.3. “Special Functions” response.

If the response is an an XML file, and if the root element is named “Special Functions” with the attribute GatExec=”default”, it gets parsed as a “Special Functions” file; each Function element is placed into the GAT3 list box as described above.

5.7.4. Default component processing response

If the response is an XML file, and if the root element is named “Components” with the attribute GatExec=”default”, it gets parsed as a default-style component file.

Here is a default component XML response. It is based on the legacy GAT response shown earlier (the one that demonstrated legacy GAT’s flaws). It can be used as a template for GAT3-compliant games:

As before, the information shown in italic characters need to be replaced on a game-by-game basis. Although the components for only one Game are shown here, the “Components” root element can have multiple “Game” child elements.

When GAT3 processes this file, it calculates a 40-character digest for each component . The digest is based on the Game Name, Manufacturer, Component Name, and Component checksum for each component.

In “laboratory mode”, this information is stored in the GAT.MDB database, which is expanded for operation with GAT3. Each Game, in addition to the legacy “Hashes” entries, also can have many Components. The Component Name and Component Checksum, along with the calculated digest, are stored for each component.

In “field mode”, the calculated digest is used to index the Manufacturer, Game, and Component.

In this fashion, the program will obviously come up blank on a component that is not already in the database. In addition, the lab can later on flag a component in the database as, for example, obsolete, viz., “MPU EPROM: V7PY43768702-00 – OBSOLETE!!”, and that’s what the field agent will see when GAT3 presents them a list of what components are reported to be in any particular game.
5.7.5. Customized processing response

If the response is an XML file, and if the root element has the attribute GatExec=”path\program.exe”, then the mechanism that allows completely general custom processing is brought into play.

This is best shown, perhaps, by an example.

Suppose that the GAT executable is located at

C:\Program Files\Gat\Gat.exe

and is set up to store incoming data files in

C:\GatData\

Consider a game that presents the command

Get File meters.xml

Suppose further the meters.xml file starts off with a root element that has the attribute

GatExec=”Bally\ProcessMeters.exe”

The result of those conditions is this: GAT3 will save the incoming meters.xml file, and then spawn a new process with this command line

“C:\Program Files\Gat\Bally\ProcessMeters.exe” “C:\GatData\meters.xml”

In this fashion, any manufacturer can work with any regulator or casino to install custom programs to handle custom data, with the data itself indicating what program is supposed to process it. In this way, GAT3 simply becomes a common means of collecting that data and firing off those programs, but aside from that has no involvement.

<?xml version="1.0"?>

<SpecialFunctions GatExec="default">

 <Function>

 <Feature>Change Baud Rate</Feature>

 <Parameter>38400</Parameter>

 </Function>

 <Function>

 <Feature>Change Baud Rate</Feature>

 <Parameter>115200</Parameter>

 </Function>

 <Function>

 <Feature>Get File</Feature>

 <Parameter>Components.xml</Parameter>

 </Function>

 <Function>

 <Feature>Get File</Feature>

 <Parameter>Meters.xml</Parameter>

 </Function>

 <Function>

 <Feature>Get File</Feature>

 <Parameter>Errors.log</Parameter>

 </Function>

 <Function>

 <Feature>Get File</Feature>

 <Parameter>AuthenticationResponse.xml</Parameter>

 <Parameter>%%BallySeed1%%</Parameter>

 </Function>

 <Function>

 <Feature>Make Coffee</Feature>

 </Function>

</SpecialFunctions>

<Components GatExec="default">

 <Game>

 <Name>EVO V8700 "Hot Ticket"</Name>

 <Manufacturer>Bally Gaming & Systems, Inc.</Manufacturer>

 <Component>

 <Name>BIOS+: V7S0100BIOSP-01</Name>

 <Checksum>20c9</Checksum>

 </Component>

 <Component>

 <Name>CD-ROM: V7GC7GC2SL00-31</Name>

 <Checksum>ca4f445a5d79edb6584dbaed2148e4d462...</Checksum>

 </Component>

 <Component>

 <Name>MPU EPROM: V7M1E02C7204-21</Name>

 <Checksum>F68A</Checksum>

 </Component>

 <Component>

 <Name>MPU EPROM: V7M4E02C7204-21</Name>

 <Checksum>BD13</Checksum>

 </Component>

 <Component>

 <Name>MPU EPROM: V7PY43768702-00</Name>

 <Checksum>E659</Checksum>

 </Component>

 </Game>

</Components>

C:\Documents and Settings\Venus\My Documents\GSA\GDS_raw_docs\GAT3_package\gatdocuments\gat3Req_5.doc
Page 9 of 9
Updated: July 19, 04 1:35 PM
Author: Robert Dubner rdubner@dubner.com
 201-664-6434

Printed: July 19, 04 1:38 PM
Bally Gaming, Inc. (6601 South Bermuda Road (Las Vegas, NV 89119-3605
Copyright (2002, Bally Gaming, Inc. All rights reserved. Distribution without the express consent of Bally Gaming, Inc. is prohibited.

