
Game Authentication Terminal 3

Requirements and Design

2. The Legacy GAT System

2.1. Physical Interconnection Layer

The GAT program is a Windows application, typically running on a notebook computer. It talks to a GAT-capable Electronic Gaming Machine (EGM) by means of a 3-wire RS-232 serial connection. (The three wires are GROUND, TRANSMIT, and RECEIVE.)

In Bally equipment, the serial port used for GAT communications is behind a locked access door. Because the door is open, the EGM can be placed into a maintenance mode which includes the GAT “slave” capabilities.

2.2. Data Transport Layer

GAT talks to the “slave” EGM over the serial line using the SVC Serial Protocol. This protocol is detailed in a GSA document with the following identification information:

A copy of that SVC Serial Protocol document should have been found in the same package as this document. Failing that, you can contact GSA at

Gaming Standards Association
39355 California St. Ste #307
Fremont, CA 94538

510.744.4007 (Phone)
510.608.5917 (Fax)
pm@gamingstandards.com (Email)

http://www.gamingstandards.com/
The SVC Protocol was proposed by GSA for exactly this purpose – communicating with an EGM over a serial line for the express purpose of identification and authentication.

The implementation of SVC used by GAT complies with the published standard in all ways except one: SVC has rather stringent inter-character response time requirements. If there is more than a five millisecond delay between two of the 9600 baud characters, that’s supposed to be flagged as an error.

GAT relaxes that specification to 500 milliseconds before giving up on an expected incoming charater, and doesn’t report it to the operator. The philosophy behind that design decision: GAT is a completely interactive program; if the operator doesn’t see an expected response, the operator will just click the appropriate button again.

The SVC Protocol is straightforward. It allows the SVC “master” (in this case the GAT program) to make four different requests of the SVC “slave”:

· What is the status of the EGM?

· Initiate an authentication calculation

· What is the status of the most recent authentication calculation?

· Return the next block of the authentication calculation response.
2.3. Legacy GAT Functionality

2.3.1. What Legacy GAT Sends

GAT uses all four of the SVC commands. The one of most interest is the Initiate Authentication Calculation Query.

As can be seen in the SVC specification, that query must be sent with a single-byte “Authentication Level” code. In the legacy GAT program, that authentication level is set to one. The optional “Authentication Seed” is not used at all in legacy GAT.

2.3.2. What Legacy GAT Expects Back

Legacy GAT (and GAT3, if the legacy “Authentication Level 1” button is pressed) expects a response file back from the EGM.

The contents of that response file must never change!

That response file must be exactly the same from every game of the same type whenever an Authentication Level 1 query response is “calculated.”

2.3.3. What Legacy GAT Does With The Response

When legacy GAT gets back a response from an EGM, the first thing it does is run the entire response through the SHA-1 Secure Hash Algorithm (NIST FIPS 140-1). This creates a 20-byte digest of the original file. That 20-byte binary number is converted to a 40-character hexadecimal string. That string is known as the “hash”.

What GAT does with that hash depends on whether it is running in “Laboratory” or “Field” mode.

2.3.3.1. GAT “Laboratory” Mode

GAT operates in two modes, which are known as “Laboratory” and “Field”. In both cases it is exactly the same program, running the same way. But the laboratory computer also has the GAT.MDB Microsoft Access database file installed in it. That database file is set up as as an ODBC “System DSN” with the name “GATDATA”.

The legacy GATDATA database has a very simple heirarchical structure. There can be a number of Manufacturers. Each manufacturer can have associated with it any number of Games. Each game can have associated with it any number of 40‑character Hashes.

After hashing a response from an EGM, GAT looks to see if the GATDATA ODBC source exists. If it does, GAT decides that it is running in “Laboratory” mode. It looks for the digest string in the database. If found, GAT reports the manufacturer and game associated with that hash value.

If the hash value is not already in the GAT.MDB database, it offers to let the operator associate the new hash value with a game already in the database. (Note: the Manufacturer and Game must be entered manually before the association can be made.)

The GAT.MDB database has a built-in function that dumps the entire database in a simple heirarchical structure in a file named GATDATA.TXT

2.3.3.2. GAT “Field” Mode

The field agents’ notebook computers run the same GAT program. But instead of the GAT.MDB Access database, they instead get loaded up with copies of the GATDATA.TXT file, which, obviously, have to be updated from time to time.

When legacy GAT gets back a response file from the EGM, it hashes it. It scans the GATDATA.TXT file looking for a match. If it finds a match, it reports the Manufacturer and Game to the operator.

If it doesn’t find a match, it says so.

And that, oddly enough, is that. Right there is the whole purpose of the GAT system, and the GAT terminal, and the SVC protocol, and all that stuff. You plug the GAT terminal into a game; you press the button; and it tells you what game you are talking to.

The point, of course, is that the GAT.MDB database is updated periodically, and those updates are reflected in the GATDATA.TXT file downloaded to the field agent’s machines, including useful information like, “THIS VERSION IS OBSOLETE AND THE MACHINE MUST BE UPGRADED.”

Date: May 2, 2000

Document ID: SVC

Version: 01.00.000

C:\Documents and Settings\Venus\My Documents\GSA\GDS_raw_docs\GAT3_package\gatdocuments\gat3Req_2.doc
Page 3 of 3
Updated: July 19, 04 1:34 PM
Author: Robert Dubner rdubner@dubner.com
 201-664-6434

Printed: July 19, 04 1:37 PM
Bally Gaming, Inc. (6601 South Bermuda Road (Las Vegas, NV 89119-3605
Copyright (2002, Bally Gaming, Inc. All rights reserved. Distribution without the express consent of Bally Gaming, Inc. is prohibited.

