
S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

 Released: 2016/03/14 Page 2541
© 2016 Gaming Standards Association (GSA)

NEW CLASS

Chapter 40

Look Inside

playerVoucher Class

Extension in v2.0: pvc

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

Page 2542 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

NEW CLASS

40.1 Introduction
The playerVoucher class is used to manage and report information about the issuance and redemption of
payment vouchers by end-clients. Payment vouchers are sometimes referred to as tickets or coupons. For
example, the playerVoucher class can be used to record the issuance of a voucher by an end-client.
Subsequently, the playerVoucher class can be used to authorize the redemption of the voucher by the same
end-client or a different end-client. The playerVoucher class can also be used to manage the configuration
information used by end-clients when performing voucher processing operations.

This functionality maps directly to similar functionality within the G2S protocol allowing a central system to
easily manage voucher processing operations across a series of edge-servers that are using the G2S protocol to
manage end-client operations.

The playerVoucher class focuses on the actual issuance and redemption of vouchers by end-clients. The
playerInfo class focuses on player registration and player management. See Chapter 30, playerInfo Class, for
more information on those topics.

40.1.1 Terminology
Within this class, the following definitions are used when referring to hosts, clients, edge-servers, and end-
clients.

Host A central system that provides access to the database of record for voucher
information. Configuration information is sent by the host to edge-servers that use
the information to manage voucher processing operations on end-clients. Voucher
issuance and redemption requests are gathered by edge-servers from end-clients and
then sent to the host for authorization, storage, and reporting purposes. Voucher
information may be sent by the host to clients, such as data warehouses.

Client A system, such as a data warehouse, that requests voucher information from the
host and/or sets subscriptions for voucher information with the host. Based on
those subscriptions, voucher information may be sent from the host to the client.

Edge-Server A system that provides voucher management services for end-clients. Configuration
information for end-clients may be received by the edge-server from the host.
Voucher issuance and redemption requests may be received by the edge-server from
end-clients and then sent by the edge-server to the host for authorization. An
optional local database of configuration and voucher information may be
maintained by the edge-server.

End-Client A system that generates voucher issuance and redemption requests. The end-client
sends the requests to the edge-server for authorization. The end-client may receive
configuration information from the edge-server. The commands used to
communicate between the end-client and the edge-server are outside of the scope of
the playerVoucher class. Another protocol, such as G2S, may be used for that
purpose.

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

 Released: 2016/03/14 Page 2543
© 2016 Gaming Standards Association (GSA)

NEW CLASS

Figure 40.1 System Roles

40.1.2 End-Client Configuration Sequence Diagrams
The following sequence diagrams demonstrate how the playerVoucher class is intended to be used to manage
the voucher configuration information for end-clients, such as EGMs, through an edge-server. For
demonstration purposes, the edge-server is managing a series of end-clients using the G2S protocol.

40.1.3 Voucher Status Request by Host
The following diagram demonstrates the behavior expected when the playerVoucher class is used by the host
to request current voucher status information for a series of end-clients from an edge-server.

1. The host requests that the edge-server report the voucher status for one or more end-clients.

2. The edge-server acknowledges the receipt of the request.

3. The edge-server collects the voucher status information from the end-clients, as necessary. The
voucher status information may be derived from information stored on the edge-server or it may be
gathered from the end-clients.

4. The edge-server reports the voucher status information for the end-clients to the host. One or more
commands may be used by the edge-server to report the information.

5. The host acknowledges the receipt of the voucher status information for the end-clients. When
reported across multiple commands, multiple acknowledgements are sent.

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

Page 2544 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

NEW CLASS

Figure 40.2 Voucher Status Request by Host

40.1.4 Voucher Configuration Change by Host
The following diagram demonstrates the behavior expected when the playerVoucher class is used by the host
to set the voucher configuration for a series of end-clients through an edge-server.

1. The host requests that the edge-server change the voucher configuration for one or more end-clients.

2. The edge-server acknowledges the receipt of the voucher configuration request.

3. The edge-server applies the voucher configuration changes to the end-clients.

4. The edge-server reports the new voucher status information for the end-clients to the host. One or
more commands may be used by the edge-server to report the information.

5. The host acknowledges the receipt of the voucher status information for the end-clients. When
reported across multiple commands, multiple acknowledgements are sent.

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

 Released: 2016/03/14 Page 2545
© 2016 Gaming Standards Association (GSA)

NEW CLASS

Figure 40.3 Voucher Configuration Change by Host

40.1.5 Voucher Configuration Request by Edge-Server
The following diagram demonstrates the behavior expected when the playerVoucher class is used by an edge-
server to request the current voucher configuration information for a series of end-clients from the host.

1. The edge-server requests that the host send the voucher configuration for one or more end-clients.

2. The host acknowledges receipt of the voucher configuration request.

3. The host requests that the edge-server change the voucher configuration for the end-clients. One or
more commands may be used by the host to request the changes.

4. The edge-server acknowledges the receipt of the voucher configuration request. When requested
across multiple commands, multiple acknowledgements are sent.

5. The edge-server applies the voucher configuration changes, as necessary, to the end-clients.

6. The edge-server reports the new voucher status for the end-clients to the host. One or more
commands may be used by the edge-server to report the information.

7. The host acknowledges the receipt of the voucher status information for the end-clients. When
reported across multiple commands, multiple acknowledgements are sent.

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

Page 2546 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

NEW CLASS

Figure 40.4 Voucher Configuration Request by Edge-Server

40.1.6 Voucher Issuance and Redemption Sequence Diagrams
The following sequence diagrams demonstrate how the playerVoucher class is intended to be used to manage
the voucher issuance and redemption requests by end-clients, such as EGMs, through an edge-server. For
demonstration purposes, the edge-server is managing a series of end-clients using the G2S protocol.

40.1.7 Voucher Issuance Request by End-Client
The following diagram demonstrates the behavior expected when the playerVoucher class is used by an edge-
server to request voucher validation IDs and report the issuance of a voucher by an end-client.

1. The end-client sends a request for validation IDs to the edge-server.

2. The edge-server forwards the request to the host.

3. The host sends one or more validation IDs to the edge-server.

4. The edge-server forwards the validation IDs to the end-client.

5. The end-client reports the issuance of a voucher to the edge-server.

6. The edge-server forwards the voucher issuance information to the host.

7. The host acknowledges receipt of the voucher issuance information from the edge-server.

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

 Released: 2016/03/14 Page 2547
© 2016 Gaming Standards Association (GSA)

NEW CLASS

8. The edge-server forwards the acknowledgement to the end-client.

Figure 40.5 Voucher Issuance Request by End-Client

40.1.8 Voucher Redemption Request by End-Client
The following diagram demonstrates the behavior expected when the playerVoucher class is used to request
redemption of a voucher by an end-client.

1. The end-client sends a voucher redemption request to the edge-server.

2. The edge-server forwards the request to the host.

3. The host authorizes the request from the edge-server.

4. The edge-server forwards the authorization to the end-client.

5. The end-client reports the final result of the voucher redemption request to the edge-server.

6. The edge-server forwards the final result to the host.

7. The host acknowledges receipt of the final result from the edge-server.

8. The edge-server forwards the acknowledgement to the end-client.

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

Page 2548 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

NEW CLASS

Figure 40.6 Voucher Redemption Request by End-Client

40.1.9 Voucher States
A voucher transaction will transition through a series of states while it is being processed by an end-client. The
current state of the transaction is reported in the voucherState attribute of commands used to report voucher
transaction activity.

When a voucher is issued, it transitions through two states.

• Upon issuance of the voucher, the state of the voucher transaction is set to S2S_issueSent.

• After the issuance has been acknowledged, the state of the voucher transaction is set to
S2S_issueAcked.

When a voucher is redeemed, it transitions through four additional states.

• When the redemption of the voucher is requested by the end-client, the state of the voucher
transaction is set to S2S_redeemSent.

• After the redemption request has been authorized (or denied), the state of the voucher transaction is
set to S2S_redeemAuth.

• When the final result of the redemption request is sent by the end-client, the state of the voucher
transaction is set to S2S_commitSent.

• After the final result has been acknowledged, the state of the voucher transaction is set to
S2S_commitAcked.

The following diagram identifies the voucher transaction states and the permitted transitions.

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

 Released: 2016/03/14 Page 2549
© 2016 Gaming Standards Association (GSA)

NEW CLASS

Figure 40.7 Voucher Transaction States

40.1.10 Validation Identifiers and Seeds
Validation identifiers are provided by the host to the end-clients. With each validation identifier, the host also
provides a seed value. Validation identifiers MUST be 18-digit numeric values. Typically, the validation
identifiers are printed on the vouchers in human-readable and bar-code form. Seed values MUST be
constructed from 0 (zero) to 20 (twenty) UTF-8 encoded characters in the range U+0020 to U+007E (ASCII
printable characters). Typically, the seed values are used to produce manual authentication identifiers which are
also printed on the vouchers and can be used for offline validation of vouchers. See Section 40.1.11, Manual
Authentication, for more details.

The edge-server is responsible for requesting validation identifiers for end-clients from the host. When the
edge-server uses a protocol such as G2S to communicate with end-clients, this responsibility may be passed to
the end-clients.

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

Page 2550 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

NEW CLASS

The voucher configuration information provided by the host to the edge-server includes a series of parameters
that are used to determine the number of validation identifiers supplied to an end-client and the frequency at
which new validation identifiers should be requested.

• The maxValIds parameter indicates the maximum number of validation identifiers that should be
stored for an end-client.

• The minLevelValIds parameter indicates the minimum number of validation identifiers stored for an
end-client before additional validation identifiers are requested.

• The valIdListRefresh parameter indicates the maximum time period that validation identifiers
should be stored before new validation identifiers are requested.

• The valIdListLife parameter indicates the maximum time period before an end-client must stop
using the validation identifiers.

Any time the number of validation identifiers stored for an end-client drops below minLevelValIds, additional
validation identifiers MUST be requested from the host by the edge-server. Similarly, if the validation
identifiers have been stored for a period of time that exceeds the valIdListRefresh or valIdListLife limits,
a new set of validation identifiers MUST be requested. In addition, whenever voucher functionality is enabled
by the host after being disabled, a new set of validation identifiers MUST be requested. When requesting
validation identifiers, the number of validation identifiers requested for an end-client MUST NOT cause the
number of validation identifiers stored for an end-client to exceed maxValIds. If the validation identifiers have
been stored for a period of time that exceeds valIdListLife, the validation identifiers MUST NOT be used to
issue vouchers until the validation identifiers have been refreshed by the host. See Section 40.20,
getValidationIds Command, for more details.

The G2S protocol includes additional information about managing validation identifiers and seed values.

40.1.11 Manual Authentication
A manual authentication identifier MUST, if possible, be printed on every voucher for cashable or promotional
credits produced by an end-client. And, when the printNonCashOffLine configuration parameter is set to
true, a manual authentication MUST, if possible, be printed on every voucher for non-cashable credits. The
manual authentication identifier is derived from a 128-bit MD5 hash of the end-client identifier, validation
identifier, voucher amount, and seed value.

Operational circumstances may prevent the end-client from printing manual authentication identifiers. For
example, the operator might choose to configure the end-client to not print manual authentication identifiers.
If the end-client cannot print manual authentication identifiers, the end-client MUST NOT print vouchers
while offline and the end-client MUST NOT allow the printOffLine configuration parameter to be set to
true.

The following procedure MUST be used to produce manual authentication identifiers.

1. Construct a 90-character string composed, from left to right, of:

a. end-client identifier (endClientId); 32 8-bit ASCII characters (U+0020 to U+007E) padded
right with zeros (U+0030).

b. validation identifier; 18 8-bit numeric ASCII characters (U+0030 to U+0039).

c. seed value; 20 8-bit UTF-8 encoded characters (U+0020 to U+007E) padded left with zeros
(U+0030).

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

 Released: 2016/03/14 Page 2551
© 2016 Gaming Standards Association (GSA)

NEW CLASS

d. voucher amount represented in the minor unit of the base currency of the end-client with no
punctuation or currency symbols; 20 8-bit numeric ASCII characters (U+0030 to U+0039)
padded left with zeros (U+0030).

2. Convert all lower case ASCII characters (U+0061 to U+007A) in the composed string to upper case
ASCII characters (U+0041 to U+005A).

3. Produce a 128-bit MD5 hash value using the 90-character composed string as input.

4. Produce the manual authentication identifier by casting the 128-bit hash value into a 32-character
hexadecimal representation and converting all alphabetic characters to upper case (U+0041 to
U+005A).

The G2S protocol includes additional information about producing manual authentication identifiers.

40.1.12 Property Identifier
The propertyId attribute, which is contained in the class-level element of each command, is used to identify
the property with which a command is associated. Commands within the playerVoucher class are property-
specific—that is, the commands, as well as the data contained within the commands, are associated with a
specific property. Within the playerVoucher class, the propertyId attribute of the class-level element of each
command MUST be validated.

For all commands within the playerVoucher class:

• If the recipient of a command determines that the propertyId contained in the command is unknown
or invalid, the recipient MUST report the error using error code S2S_RIX201 Invalid Property
Identifier.

Commands contained within the propertyInfo class can be used to validate property identifiers and collect
additional configuration information for properties.

40.1.13 Client Identifier
The clientType and clientId attributes, which are contained in each command within the playerVoucher
class, uniquely identify a specific client within a gaming network. The client may be the system acting as an
intermediary, such as an edge-server, or the client may be an end-client – that is, the end-client may be
operating without the assistance of an edge-server. Within the playerVoucher class, the clientType and
clientId attributes contained in each command MUST be validated.

Edge-servers and client systems are responsible for identifying the client, determining the clientType and
clientId for the client, and communicating the clientType and clientId to the host system. The host
system is responsible for validating the clientType and clientId reported by edge-servers and client systems
and accurately processing commands based on that information.

For all commands within the playerVoucher class:

• If the recipient of a command determines that the combination of clientType and clientId
associated with the command is unknown or invalid, the recipient MUST report the error using error
code MS13 Unknown Client.

• If the recipient of a command determines that the client is disabled, the recipient MUST, if possible,
process the command. If the recipient cannot process the command because the client is disabled, the
recipient MUST report the error using error code MS14 Client Disabled.

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

Page 2552 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

NEW CLASS

• If the recipient of a command determines that the client is not registered for the property identified in
the command, the recipient MUST report the error using error code S2S_CIX202 Invalid Client
Identifier for Property.

Commands contained within the clientInfo class can be used to validate clients and to collect additional
information about clients.

40.1.14 Player Identifier
Vouchers may be associated with a player identifier when they are issued. The edge-server is responsible for
identifying the player, determining the player identifier for the player, and communicating the player identifier
to the host system. The host system is responsible for validating the player identifiers reported by the edge-
server and accurately reporting transactions based on that information.

For all commands within the playerVoucher class:

• Provided that the playerId is not <empty>, if the host determines that the playerId is invalid for the
property, the host MUST report the error using error code S2S_PIX202 Invalid Player Identifier
for Property.

• Provided that the idNumber is not <empty>, if the host determines that the combination of
idReaderType and idNumber is invalid for the property, the host MUST report the error using error
code S2S_PIX204 Invalid Player Card for Property.

When identifying a player, the edge-server MUST include either the playerId for the player or the
idReaderType and idNumber of the player card presented by the player. Both sets of information MAY be
included. If only one set of information is included, the host MAY include the other set of information in its
response to the edge-server. If both sets of information are included, the host MUST ignore the idReaderType
and idNumber and only use the playerId to identify the player. If neither set of information is included, the
host MUST simply ignore the player information.

Note, however, that the host MUST NOT report errors related to invalid player information when processing
voucher issuance requests. The host MUST make a best effort to accept voucher issuance requests even if the
player information provided with the requests is invalid.

Commands contained within the playerInfo class can be used to validate player identifiers and to collect
additional information about a player.

40.1.15 Configuration Identifier
The configuration identifier (configurationId) is used to identify a specific set of voucher configuration
values. The host MAY specify a unique value for the configurationId when it sends a setVoucherConfig
command to an edge-server requesting changes to the voucher configuration for an end-client. Once the edge-
server has applied the changes, the edge-server MUST report the configurationId back to the host in any
subsequent voucherStatusList or voucherConfigList commands that it sends to the host. The host can
monitor the configurationId to make sure that the correct voucher configuration is in place for the end-
client.

The host MAY also specify the configurationId when it sends a setVoucherState command to an edge-
server. If the host specifies a non-zero value and the value does not match the configurationId currently in
effect for the end-client, the edge-server MUST generate a reqVoucherConfig command to request the new
voucher configuration for the end-client from the host.

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

 Released: 2016/03/14 Page 2553
© 2016 Gaming Standards Association (GSA)

NEW CLASS

The host can use whatever method it determines appropriate to assign a value to the configurationId
provided that the value is greater than 0 (zero). The value 0 (zero) indicates that the voucher configuration was
set locally at the end-client. Thus, the value 0 (zero) SHOULD NOT be used to identify a configuration set by
the host.

When the G2S protocol is used to communicate with end-clients, the configuration identifier can be used as
the configurationId for the G2S voucher device. More information about the G2S configurationId and
voucher devices can be found in the G2S protocol.

40.1.16 Transaction Identifier
Each voucher transaction is assigned a transaction identifier (transactionId). The edge-server is responsible
for assigning the transactionId to the transaction. However, the transactionId may be assigned by the end-
client.

The transactionId MUST uniquely identify a specific voucher transaction for the end-client. At the edge-
server, the combination of endClientType, endClientId, and transactionId MUST be unique. The
transactionId itself MAY also be unique. Provided that a transactionId is unique to the end-client, the
edge-server MAY use whatever method it determines appropriate to assign the transactionId. The edge-
server MAY use a transactionId assigned by the end-client provided that the transactionId is unique for
the end-client.

The host system MUST use the transactionId to detect duplicate voucher transactions, as well as updates to
transactions, coming from an edge-server. Since the transactionId may only be unique to the edge-server, the
host system MUST use the combination of clientType, clientId, endClientType, endClientId, and
transactionId to uniquely identify individual transactions.

The transactionId assigned to a voucher transaction is specified by the edge-server when the transaction is
requested by the edge-server. The edge-server is responsible for properly recording the transactionId and
including it in any subsequent commands related to the transaction. The host system is responsible for
properly recording the transactionId when the transaction is first requested and, subsequently, accurately
detecting updates based on the transactionId provided by the edge-server.

40.1.17 Wildcard Conventions
The playerVoucher class supports two wildcards, S2S_all and S2S_default. The wildcards can be used to
simplify end-client selection within certain commands. Not all commands support wildcards—wildcards
MUST NOT be used unless specifically permitted within the description of a command.

The S2S_all wildcard is used to indicate that a command applies to all end-clients. Typically, end-clients are
identified using the endClientType and endClientId attributes – for example, endClientType = "S2S_egm"
and endClientId = "ABC_123". Alternatively, all end-clients can be identified by specifying the S2S_all
wildcard – for example, endClientType = "S2S_all" and endClientId = "S2S_all". Or, all end-clients of a
particular type can be specified – for example, endClientType = "S2S_egm" and endClientId = "S2S_all".

• When the S2S_all wildcard is specified in a command for the endClientType, the command MUST
be applied to all end-clients regardless of endClientType; otherwise, the command MUST only be
applied to end-clients with the specified endClientType.

• When the S2S_all wildcard is specified in a command for the endClientId, the command MUST be
applied to all end-clients regardless of the endClientId; otherwise, the command MUST only be
applied to end-clients with the specified endClientId.

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

Page 2554 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

NEW CLASS

The S2S_default wildcard is used to indicate that a command contains a set of default configuration values
for new end-clients. In the absence of any specific configuration settings for an end-client, the default
configuration values MUST be applied to the end-client. For example, if the host has set a default
configuration for end-clients of an edge-server, when a new end-client is registered with the edge-server, the
edge-server should apply the default configuration to the end-client. Subsequently, the host may override the
defaults by sending specific configuration settings for the end-client to the edge-server.

• When the S2S_default wildcard is specified for the endClientType in a command, the contents of
the command MUST be used as the default for all end-clients regardless of endClientType;
otherwise, the contents of the command MUST only be used as the default for end-clients with the
specified endClientType.

• When the S2S_default wildcard is specified for the endClientId in a command, the contents of the
command MUST be used as the default for all end-clients of the specified endClientType; otherwise,
the contents of the command MUST NOT be used as the default for end-clients.

Note that the S2S_all wildcard is transient in nature. Commands containing the S2S_all wildcard are applied
to the set of end-clients registered with an edge-server at the time that the commands are received. The
S2S_default wildcard is persistent in nature. The commands containing the S2S_default wildcard are not
applied until an end-client needs to be configured and there are no specific configuration settings for the end-
client. Default configuration settings remain in effect and MUST be persisted, per the persistDataType of the
edge-server, until superseded by new default configuration settings.

40.1.18 Categorization of Class
To help provide guidance to implementers regarding the maturity and stability of the S2S standard, GSA has
categorized the various classes within S2S as Candidate Standards, Proposed Standards, or Recommended
Standards. This class is categorized as a Candidate Standard.

• Standards identified as Candidate Standards are the least mature; changes to these standards should be
expected in future releases.

• Standards identified as Proposed Standards have been reduced to practice and deployed; very few
changes to these standards should be expected.

• Standards identified as Recommended are the most mature and have been widely deployed; no
changes to these standards should be expected.

Further details about the categorization of standards and extensions can be found in the GSA Policy
Handbook.

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

 Released: 2016/03/14 Page 2555
© 2016 Gaming Standards Association (GSA)

NEW CLASS

40.2 Data Set Summary

40.2.1 End-Client Configuration Data Sets
The following data sets are used by the host to manage the voucher configuration and status of end-clients.
The host sends the voucher configuration and state information to the edge-server. The edge-server is then
responsible for configuring the end-clients.

40.2.2 Voucher Reporting Data Sets
The following data set is used by the host to report voucher information to clients. The data set is used when a
client requests information about a voucher. The data set is also used when a host reports voucher information
based on a subscription from the client.

Table 40.1 End-Client Configuration Data Sets

Data Set Section Description

voucherState Section 40.7 Used to set the current state of the voucher functionality
on an end-client.

voucherConfig Section 40.8 Used to set and report the current configuration of the
voucher functionality on an end-client.

voucherStatus Section 40.9 Used to report the current status of the voucher
functionality on an end-client.

Table 40.2 Voucher Reporting Data Sets

Data Set Section Description

voucher Section 40.10 Used to report voucher information to clients.

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

Page 2556 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

NEW CLASS

40.3 Command Summary

40.3.1 End-Client Configuration Commands
The following commands are used to query and manipulate the data sets used to manage the voucher
configuration and status of end-clients.

Table 40.3 Commands Originated by Host

Command Section Description

getVoucherStatus Section 40.11 Used to request the current voucher status of one or
more end-clients from an edge-server. Causes the edge-
server to generate one or more voucherStatusList
commands.

setVoucherState Section 40.12 Used to change the voucher state of one or more end-
clients managed by an edge-server. Causes the edge-
server to generate one or more voucherStatusList
commands.

getVoucherConfig Section 40.13 Used to request the current voucher configuration
information for one or more end-clients from an edge-
server. Causes the edge-server to generate one or more
voucherConfigList commands.

setVoucherConfig Section 40.14 Used to change the current voucher configuration
information for one or more end-clients managed by an
edge-server. Causes the edge-server to generate one or
more voucherStatusList commands.

voucherConfigAck Section 40.19 Used to acknowledge the receipt of a configuration-
related request from an edge-server.

Table 40.4 Commands Originated by Edge-Server (Sheet 1 of 2)

Command Section Description

reqVoucherStatus Section 40.15 Used to request the current voucher status for one or
more end-clients from the host. Causes the host to
generate one or more setVoucherState commands.

voucherStatusList Section 40.16 Used to report the current voucher status for one or
more end-clients to the host.

reqVoucherConfig Section 40.17 Used to request the current voucher configuration for
one or more end-clients from the host. Causes the host
to generate one or more setVoucherConfig commands.

voucherConfigList Section 40.18 Used to report the current voucher configuration for
one or more end-clients to the host.

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

 Released: 2016/03/14 Page 2557
© 2016 Gaming Standards Association (GSA)

NEW CLASS

40.3.2 Voucher Issuance & Redemption Commands
The following commands are used to manage voucher transactions between hosts and end-clients.

voucherConfigAck Section 40.19 Used to acknowledge the receipt of a configuration-
related request from a host.

Table 40.5 Commands Originated by Host

Command Section Description

validationIdList Section 40.21 Used to provide validation identifiers and seed values to
an end-client.

issueVoucherAck Section 40.23 Used to acknowledge receipt of a voucher issuance
request by an end-client.

authorizeVoucher Section 40.25 Used to authorize a voucher redemption request by an
end-client.

commitVoucherAck Section 40.27 Used to acknowledge receipt of the final results of a
voucher redemption request by an end-client.

Table 40.6 Commands Originated by Edge-Server

Command Section Description

getValidationIds Section 40.20 Used to request validation identifiers and seed values for
an end-client. Causes the host to generate a
validationIdList command.

issueVoucher Section 40.22 Used to report that a voucher has been issued by an end-
client. Causes the host to generate an issueVoucherAck
command.

redeemVoucher Section 40.24 Used to request authorization for an end-client to
redeem a voucher. Causes the host to generate an
authorizeVoucher command.

commitVoucher Section 40.26 Used to report the final results of a voucher redemption
transaction for an end-client. Causes the host to generate
a commitVoucherAck command.

Table 40.4 Commands Originated by Edge-Server (Sheet 2 of 2)

Command Section Description

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

Page 2558 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

NEW CLASS

40.3.3 Voucher Reporting Commands
The following commands are used to report voucher information to interested clients.

Table 40.7 Commands Originated by Host

Command Section Description

voucherUpdate Section 40.28 Used to report updates to voucher information to
subscribed clients. Causes the client to generate a
voucherUpdateAck command.

voucherResults Section 40.31 Used to report the results of voucher information
queries to clients.

postVouchersAck Section 40.33 Used to report that voucher information has been
posted to a specified location.

Table 40.8 Commands Originated by Client

Command Section Description

voucherUpdateAck Section 40.29 Used to acknowledge receipt of voucher information
from the host.

queryVouchers Section 40.30 Used to request voucher information from the host.
Causes the host to generate a voucherResults
command.

postVouchers Section 40.32 Used to request that voucher information be posted to a
specified location. Causes the host to generate a
postVoucherAck command.

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

 Released: 2016/03/14 Page 2559
© 2016 Gaming Standards Association (GSA)

NEW CLASS

40.4 Request-Response Pairs
The following tables organize the commands contained within the playerVoucher class into request-response
pairs. The tables are organized into functional groups. In each table:

• The first column identifies which commands MAY be sent as requests.

• The second column identifies which commands MUST be sent as responses to the requests.

• The third column indicates whether the request MAY be sent as a notification. If a command is not
permitted to be sent as a notification, the command MUST NOT be sent as such.

40.4.1 End-Client Configuration Request-Response Pairs
This group of request-response pairs is used to manage the voucher configuration and status of end-clients.

40.4.2 Voucher Issuance & Redemption Request-Response Pairs
This group of request-response pairs is used to manage voucher transactions between hosts and end-clients.

Table 40.9 Request-Response Pairs Originated by Host

Request Response Notification

getVoucherStatus voucherConfigAck No

setVoucherState voucherConfigAck No

getVoucherConfig voucherConfigAck No

setVoucherConfig voucherConfigAck No

Table 40.10 Request-Response Pairs Originated by Edge-Server

Request Response Notification

reqVoucherStatus voucherConfigAck No

voucherStatusList voucherConfigAck No

reqVoucherConfig voucherConfigAck No

voucherConfigList voucherConfigAck No

Table 40.11 Request-Response Pairs Originated by Edge-Server

Request Response Notification

getValidationIds validationIdList No

issueVoucher issueVoucherAck No

redeemVoucher authorizeVoucher No

commitVoucher commitVoucherAck No

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

Page 2560 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

NEW CLASS

40.4.3 Voucher Reporting Request-Response Pairs
This group of request-response pairs is used to report voucher information to interested clients.

Table 40.12 Request-Response Pairs Originated by Host

Request Response Notification

voucherUpdate voucherUpdateAck Yes

Table 40.13 Request-Response Pairs Originated by Client

Request Response Notification

queryVouchers voucherResults No

postVouchers postVouchersAck No

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

 Released: 2016/03/14 Page 2561
© 2016 Gaming Standards Association (GSA)

NEW CLASS

40.5 System Services
The following tables organize the commands and data sets within the playerVoucher class into system service
groups. These groups are used by a system to describe its capabilities to another system. See Section 1.8,
System Capabilities, for more details about system service groups.

For the playerVoucher class, the host system acts as the provider of services (S2S_host) to client systems and
edge-servers. The client systems and edge-servers act as the consumers of services (S2S_client) provided by
the host. The host system provides services to clients that allow clients to query a database of voucher
information maintained by the host and to request that updates to voucher information be sent to the clients.
The host system provides services to edge-servers that are used to set voucher configurations for end-clients
and to manage voucher transactions between the host and end-clients.

The following table identifies the requests and notifications that may be originated by a system that is acting in
a specific role—that is, consumer or provider. The requests and notifications that may be originated by a
system acting as a consumer are listed separately from the requests and notifications that may be originated by
a system acting as a provider.

The requests and notifications listed for a specific role MAY be originated by a system acting in that role; the
same requests and notifications MUST be supported by a system acting in the opposite role.

• The requests and notifications originated by a system acting as a consumer (S2S_client) MUST be
supported by a system acting as a provider (S2S_host).

• Likewise, the requests and notifications originated by a system acting as a provider (S2S_host) MUST
be supported by a system acting as a consumer (S2S_client).

Table 40.14 playerVoucher System Service Groups

classType serviceType

Requests and Notifications
Originated by Consumer
(S2S_client)

Requests and Notifications
Originated by Provider
(S2S_host)

S2S_playerVoucher S2S_configuration voucherStatusList
voucherConfigList
reqVoucherStatus
reqVoucherConfig

getVoucherStatus
setVoucherState
getVoucherConfig
setVoucherConfig

S2S_playerVoucher S2S_issueVouchers getValidationIds
issueVoucher

S2S_playerVoucher S2S_redeemVouchers redeemVoucher
commitVoucher

S2S_playerVoucher S2S_voucherUpdates voucherUpdate

S2S_playerVoucher S2S_queryVouchers queryVouchers

S2S_playerVoucher S2S_postVouchers postVouchers

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

Page 2562 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

NEW CLASS

40.5.1 Critical Data
When a system indicates that it retains critical data—that is, the persistDataType for a service is set to
S2S_indefinitely or S2S_untilOutage—the following data sets are considered critical data and, to the
extent required by the persistDataType, MUST be retained by the system: voucherState, voucherConfig,
voucherStatus, and voucher.

As the system of record for voucher information, the host system MUST report that it persists the critical data
indefinitely—that is, the host MUST set the persistDataType for its services to S2S_indefinitely.

Edge-servers and clients MAY choose whether to persist the critical data. When an edge-server or client
chooses not to persist the critical data, the edge-server or client is responsible for recovering the critical data
from the host upon restart; the edge-server or client MUST request current status and configuration
information from the host upon restart as needed to refresh the critical data. The host system is not expected
to change its operational mode based on whether the edge-server or client persists the critical data.

Similarly, the edge-server or client is responsible for requesting critical data from the host when a new end-
client is discovered; in particular, the edge-server or client MUST request status and configuration information
as needed from the host when a new end-client is discovered.

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

 Released: 2016/03/14 Page 2563
© 2016 Gaming Standards Association (GSA)

NEW CLASS

40.6 Information Updates
The following table identifies the information updates within the playerVoucher class that MAY be generated
by a host. A system MAY subscribe to these information updates using commands within the clientUpdate
class. See Chapter 27, clientUpdate Class, for more details on subscribing to information updates.

Table 40.15 playerVoucher Information Updates

className commandName elementName

S2S_playerVoucher voucherUpdate voucher

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

Page 2564 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

NEW CLASS

40.7 voucherState Data Set

40.7.1 Data Set Description
The following table identifies the attributes and sub-elements of the voucherState data set. The
voucherState element contains information that is used by the host to control the overall state of voucher
functionality on an end-client. Sub-elements of the voucherState element, if any, may contain additional
information about the state of voucher functionality.

The enable and disableText attributes contained in the voucherState data set map directly to corresponding
attributes in the setVoucherState command of the G2S protocol. The lockout, lockText, and lockTimeOut
attributes contained in the voucherState data set map directly to corresponding attributes in the
setVoucherLockOut command of the G2S protocol. More information about these attributes can be found in
the G2S protocol.

40.7.2 Attribute and Element Detail

Table 40.16 voucherState Attributes

Attribute Restrictions Description

enable type: xs:boolean
use: optional
default: true

Indicates whether voucher functionality should be
enabled. (setVoucherState.enable)

disableText type: t_textMessage
use: optional
default: <empty>

Text message to display while the device is disabled.
(setVoucherState.disableText)

lockOut type: xs:boolean
use: optional
default: false

Indicates whether the end-client should be locked.
(setVoucherLockOut.lockOut)

lockText type: t_textMessage
use: optional
default: <empty>

Text message to display while the end-client is
locked. (setVoucherLockOut.lockText)

lockTimeOut type: t_milliseconds
use: optional
default: 1000

Duration of the lock in milliseconds. If the lock has
not been removed within the time specified, the
end-client should remove the lock.
(setVoucherLockOut.lockTimeOut)

configurationId type: t_configurationId
use: optional
default: 0

Configuration identifier; used by the edge-server to
determine whether the correct configuration is in
use by the end-client.
(voucherStatus.configurationId)

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

 Released: 2016/03/14 Page 2565
© 2016 Gaming Standards Association (GSA)

NEW CLASS

40.8 voucherConfig Data Set

40.8.1 Data Set Description
The following table identifies the attributes and sub-elements of the voucherConfig data set. The
voucherConfig element contains information that is used by the host to set the voucher configuration for an
end-client. Sub-elements of the voucherConfig element may contain additional information about the voucher
configuration.

The attributes contained in the voucherConfig data set map directly to corresponding attributes in the
voucherProfile command of the G2S protocol. More information about the attributes can be found in the
G2S protocol.

When this data set is included in a request to change the configuration of an end-client, the following error
conditions MAY be reported by the recipient of the request, indicating that no action was taken for the end-
client:

• If the recipient determines that manual authentication identifiers cannot be printed by the end-client
and offline printing has been requested, the recipient MUST report the error using error code
S2S_PVX001 Manual Authentication Identifiers Not Supported by End-Client.

40.8.2 Attribute and Element Detail

Table 40.17 voucherConfig Attributes (Sheet 1 of 4)

Attribute Restrictions Description

configurationId type: t_configurationId
use: optional
default: 0

Configuration identifier; used by the edge-server to
determine whether the correct configuration is in use
by the end-client.
(voucherProfile.configurationId)

restartStatus type: xs:boolean
use: optional
default: true

Indicates the state of voucher functionality upon
restart. (voucherProfile.restartStatus)

requiredForPlay type: xs:boolean
use: optional
default: false

Indicates whether the end-client must be disabled
when voucher functionality is disabled.
(voucherProfile.requiredForplay)

timeToLive type: t_milliseconds
use: optional
default: 30000

Time-to-live value for voucher-related requests
generated by the end-client.
(vocuherProfile.timeToLive)

combineCashableOut type: xs:boolean
use: optional
default: false

Indicates whether promotional credits are converted
to cashable credits when issuing vouchers.
(voucherProfile.combineCashableOut)

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

Page 2566 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

NEW CLASS

allowNonCashOut type: xs:boolean
use: optional
default: true

Indicates whether the end-client is allowed to issue
vouchers for non-cashable credits.
(voucherProfile.allowNonCashOut)

maxValIds type: xs:int
use: optional
default: 20
minIncl: 1

Maximum number of validation identifiers stored by
the end-client. (voucherProfile.maxValIds)

minLevelValIds type: xs:int
use:optional
default: 15
minIncl: 0

Minimum number of validation identifiers stored by
the end-client before additional validation identifiers
are requested. (voucherProfile.minLevelValIds)

valIdListRefresh type: t_milliseconds
use: optional
default: 43200000

Maximum time period after validation identifiers have
been refreshed before new validation identifiers are
requested. (voucherProfile.valIdListRefresh)

valIdListLife type: t_milliseconds
use: optional
default: 84600000

Maximum time period after validation identifiers have
been refreshed before the end-client must stop using
the validation identifiers.
(voucherProfile.valListLife)

voucherHoldTime type: t_milliseconds
use: optional
default: 15000

Maximum time period that the end-client should wait
for a host authorization before returning a voucher.
(voucherProfile.voucherHoldTime)

printOffLine type: xs:boolean
use: optional
default: true

Indicates whether the end-client is allowed to issue
vouchers while communications to the edge-server
are lost. (voucherProfile.printOffline)

expireCashPromo type: xs:int
use: optional
default: 30
minIncl: 0

Number of days before vouchers for cashable and
promotional credits expire.
(voucherProfile.expireCashPromo)

printExpCashPromo type: xs:boolean
use: optional
default: true

Indicates whether expiration dates should be printed
on vouchers for cashable and promotional credits.
(voucherProfile.printExpcashPromo)

expireNonCash type: xs:int
use: optional
default: 30
minIncl: 0

Number of days before vouchers for non-cashable
credits expire. (voucherProfile.expireNonCash)

printExpNonCash type: xs:boolean
use: optional
default: true

Indicates whether expiration dates should be printed
on vouchers for non-cashable credits.
(voucherProfile.printExpNonCash)

propName type: t_voucherTitle40
use: required

Name of the property. (voucherProfile.propName)

propLine1 type: t_voucherTitle40
use: required

First address line for the property.
(voucherProfile.titlePropLine1)

Table 40.17 voucherConfig Attributes (Sheet 2 of 4)

Attribute Restrictions Description

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

 Released: 2016/03/14 Page 2567
© 2016 Gaming Standards Association (GSA)

NEW CLASS

propLine2 type: t_voucherTitle40
use: required

Second address line for the property.
(voucherProfile.titlePropLine2)

titleCash type: t_voucherTitle16
use: required

Title printed on vouchers for cashable credits.
(voucherProfile.titleCash)

titlePromo type: t_voucherTitle16
use: optional
default: <empty>

Title printed on vouchers for promotional credits; if
<empty>, use titleCash.
(voucherProfile.titlePromo)

titleNonCash type: t_voucherTitle16
use: required

Title printed on vouchers for non-cashable credits.
(voucherProfile.titleNonCash)

titleLargeWin type: t_voucherTitle16
use: required

Title printed on vouchers for wins greater than the
large win limit for the end-client.
(voucherProfile.titleLargeWin)

titleBonusCash type: t_voucherTitle16
use: required

Title printed on vouchers for cashable credits
resulting from external bonus awards.
(voucherProfile.titleBonusCash)

titleBonusPromo type: t_voucherTitle16
use: optional
default: <empty>

Title printed on vouchers for promotional credits
resulting from external bonus awards; if <empty>,
use titleBonusCash.
(voucherProfile.titleBonusPromo)

titleBonusNonCash type: t_voucherTitle16
use: required

Title printed on vouchers for non-cashable credits
resulting from external bonus awards.
(voucherProfile.titleBonusNonCash)

titleWatCash type: t_voucherTitle16
use: required

Title printed on vouchers for cashable credits
resulting from wagering account transfers.
(voucherProfile.titleWatCash)

titleWatPromo type: t_voucherTitle16
use: optional
default: <empty>

Title printed on vouchers for promotional credits
resulting from wagering account transfers; if
<empty>, use titleWatCash.
(voucherProfile.titleWatPromo)

titleWatNonCash type: t_voucherTitle16
use: required

Title printed on vouchers for non-cashable credits
resulting from wagering account transfers.
(voucherProfile.titleWatNonCash)

allowVoucherIssue type: xs:boolean
use: optional
default: true

Indicates whether the end-client should request
validation identifiers, thus, enabling voucher issuance
functionality. (voucherProfile.allowVoucherIssue)

allowVoucherRedeem type: xs:boolean
use: optional
default: true

Indicates whether the end-client should support
voucher redemption functionality.
(voucherProfile.allowVoucherRedeem)

Table 40.17 voucherConfig Attributes (Sheet 3 of 4)

Attribute Restrictions Description

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

Page 2568 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

NEW CLASS

maxOnLinePayOut type: t_meterValue
use: optional
default: 0

Maximum amount that can be paid by voucher while
communications are not lost; 0 (zero) indicates that
there is no limit.
(voucherProfile.maxOnLinePayOut)

maxOffLinePayOut type: t_meterValue
use: optional
default: 0

Maximum amount that can be paid by voucher while
communications are lost; 0 (zero) indicates that there
is no limit. (voucherProfile.maxOffLinePayOut)

printNonCashOffLine type: xs:boolean
use: optional
default: true

Indicates whether vouchers for non-cashable credits
can be issued while communications are lost; both
printOffLine and allowNonCashOut must also be
set to true for vouchers for non-cashable credits to
be printed while communications are lost.
(voucherProfile.printNonCashOffLine)

usePlayerIdReader type: xs:boolean
use: optional
default: false

Indicates whether the ID reader associated with the
currently active player session or a specific ID reader
should be used when reporting voucher information.
(voucherProfile.usePlayerIdReader)

noAckTimer type: t_milliseconds
use: optional
default: 15000

Indicates the maximum time between when a
voucher is issued and when it is acknowledged before
the validation system is declared offline.
(voucherProfile.noAckTimer)

Table 40.17 voucherConfig Attributes (Sheet 4 of 4)

Attribute Restrictions Description

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

 Released: 2016/03/14 Page 2569
© 2016 Gaming Standards Association (GSA)

NEW CLASS

40.9 voucherStatus Data Set

40.9.1 Data Set Description
The following table identifies the attributes and sub-elements of the voucherStatus data set. The
voucherStatus element contains information that is used by the edge-server to report the current status of
voucher functionality for an end-client. Sub-elements of the voucherStatus element, if any, may contain
additional information about the current status of voucher functionality for an end-client.

The attributes contained in the voucherStatus data set map directly to corresponding attributes in the
voucherStatus, voucherProfile, and idReaderProfile commands of the G2S protocol. More information
about the attributes can be found in the G2S protocol.

40.9.2 Attribute and Element Detail

Table 40.18 voucherStatus Attributes

Attribute Restrictions Description

enabled type: xs:boolean
use: optional
default: true

Indicates whether voucher functionality
has been enabled by the host for the
end-client.
(voucherStatus.hostEnabled)

locked type: xs:boolean
use: optional
default: false

Indicates whether the end-client has
been locked by the host.
(voucherStatus.hostLocked)

validationListId type: t_validationListId
use: required

Validation list identifier sent by the host
with the most recent set of validation
identifiers.
(voucherStatus.validationListId)

configurationId type: t_configurationId
use: optional
default: 0

Configuration identifier; used by the
edge-server to determine whether the
correct configuration is in use by the
end-client.
(voucherStatus.configurationId)

idReaderType type: t_idReaderTypes
use: optional
default: S2S_none

Type of ID reader used to identify
players.
(idReaderProfile.idReaderType via
voucherProfile.idReaderId)

systemOnLine type: xs:boolean
use: optional
default: true

Indicates whether the validation system
is online.
(voucherStatus.systemOnline)

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

Page 2570 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

NEW CLASS

40.10 voucher Data Set

40.10.1 Data Set Description
The following table identifies the attributes and sub-elements of the voucher data set. The voucher element
contains information that is used to report the status of voucher transactions between the host and end-clients.
Sub-elements of the voucher element, if any, may contain additional information about the voucher
transactions.

The attributes contained in the voucher data set map directly to corresponding attributes in various commands
within the voucher class of the G2S protocol. More information about the attributes can be found in the G2S
protocol.

• Other than syntactical errors, the presence of unknown or invalid values in attributes of the voucher
element is not considered an error. An implementation SHOULD, if possible, accept invalid values in
the endClientType, voucherState, idReaderType, voucherAction, creditType, voucherSource,
hostAction, and endClientAction attributes. An implementation is expected to make a best effort to
accept and process voucher information.

However, if the recipient is unable to accept an unknown or invalid value, the following error conditions MAY
be reported by the recipient of the request, indicating that no action was taken:

• If the recipient determines that the endClientType is invalid, the recipient MUST report the error
using error code S2S_PVX002 Invalid End-Client Type.

• If the recipient determines that the voucherState is invalid, the recipient MUST report the error
using error code S2S_PVX004 Invalid Voucher State.

• If the recipient determines that the idReaderType is invalid, the recipient MUST report the error
using error code S2S_GBX034 Invalid ID Reader Type.

• If the recipient determines that the voucherAction is invalid, the recipient MUST report the error
using error code S2S_PVX005 Invalid Voucher Action.

• If the recipient determines that the creditType is invalid, the recipient MUST report the error using
error code S2S_RIX039 Invalid Credit Type.

• If the recipient determines that the voucherSource is invalid, the recipient MUST report the error
using error code S2S_PVX006 Invalid Voucher Source.

• If the recipient determines that the hostAction is invalid, the recipient MUST report the error using
error code S2S_PVX007 Invalid Host Action.

• If the recipient determines that the egmAction is invalid, the recipient MUST report the error using
error code S2S_PVX008 Invalid End-Client Action.

40.10.2 Attribute and Element Detail

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

 Released: 2016/03/14 Page 2571
© 2016 Gaming Standards Association (GSA)

NEW CLASS

Table 40.19 voucher Attributes (Sheet 1 of 2)

Attribute Restrictions Description

endClientType type: t_clientTypes
use: required

End-client type; type of end-client that
originated the voucher request. Wildcards
are not permitted.

endClientId type: t_clientId
use: required

End-client identifier; client identifier of the
end-client that originated the voucher
request. Wildcards are not permitted.

Transaction Identification and Status Information

transactionId type: t_transactionId
use: required

Transaction identifier; assigned by the end-
client. (voucherLog.transactionId)

voucherStatus type: t_voucherStates
use: required

Transaction status; current status of the
transaction. (voucherLog.voucherState)

voucherAction type: t_voucherActions
use: required

Voucher action: issue or redeem.
(voucherLog.voucherAction)

Player Identification Information

idReaderType type: t_idReaderTypes
use: optional
default: S2S_none

Type of ID reader used to identify the
player. (voucherLog.idReaderType)

idNumber type: t_idNumber
use: optional
default: <empty>

ID number associated with the player.
(voucherLog.idNumber)

playerId type: t_playerId
use: optional
default: <empty>

Player identifier. (voucherLog.playerId)

Voucher Attributes

validationId type: t_validationId
use: required

Validation identifier; all but the last four
digits should be masked.
(voucherLog.validationId)

voucherAmt type: t_meterValue
use: required

Voucher amount.
(voucherLog.vouchetAmt)

creditType type: t_creditTypes
use: required

Type of credits; cashable, promotional, or
non-cashable. (voucherLog.creditType)

voucherSource type: t_voucherSources
use: optional
default: S2S_endClient

Indicates the source of the voucher; end-
client or system.
(voucherLog.voucherSequence)

largeWin type: xs:boolean
use: optional
default: false

Indicates whether the voucher was issued
because the amount won exceeded the end-
client’s large win limit.
(voucherLog.largeWin)

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

Page 2572 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

NEW CLASS

voucherSequence type: xs:int
use: optional
default: 0
minIncl: 0

The issuing end-client’s internal voucher
sequence number printed on the voucher.
(voucherLog.voucherSequence)

expireCredits type: xs:boolean
use: optional
default: false

Indicates whether non-cashable credits have
an associated expiration date/time; ignored
when creditType is not set to
S2S_nonCashable.
(voucherLog.expireCredits)

expireDateTime type: t_dateTime
use: optional
default: 2000-01-
01T00:00:00.000-00:00

Expiration date/time associated with non-
cashable credits; ignored when creditType
is not set to S2S_nonCashable or
expireCredits is set to false.
(voucherLog.expireDateTime)

hostAction type: t_voucherHostActions
use: optional
default: S2S_endClientAction

Indicates whether the host preferred the
voucher to be stacked, returned, or that the
end-client determines the appropriate
action; ignored when voucherAction is set
to S2S_issue. (voucherLog.hostAction)

hostException type: t_voucherHostExcs
use: optional
default: 0

Exception code set by host; ignored when
voucherAction is set to S2S_issue.
(voucherLog.hostException)

Final Result Information

transferAmt type: t_meterValue
use: optional
default: 0

Actual amount transferred.
(voucherLog.transferAmt)

transferDateTime type: t_dateTime
use: required

Date/time that the transaction record was
updated. (voucherLog.transferDateTime)

expireDays type: xs:int
use: optional
default: -1
minIncl: -1

Number of days before the voucher expires;
ignored if voucherAction is set to
S2S_redeem or expireCredits is set to
true; -1 (negative one) indicates that there is
no expiration period; set to -1 (negative one)
when voucherAction is set to S2S_redeem
or expireCredits is set to true.
(voucherLog.expireDays)

endClientAction type: t_voucherClientActions
use: required

Indicates whether the end-client issued,
stacked or returned the voucher.
(voucherLog.egmAction)

endClientException type: t_voucherClientExcs
use: optional
default: 0

End-client exception code; 0 (zero) indicates
no end-client exceptions.
(voucherLog.egmException)

Table 40.19 voucher Attributes (Sheet 2 of 2)

Attribute Restrictions Description

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

 Released: 2016/03/14 Page 2573
© 2016 Gaming Standards Association (GSA)

NEW CLASS

40.11 getVoucherStatus Command

40.11.1 Command Description
This command is used by a host to request current voucher status information for one or more end-clients.
The command MUST only be used with point-to-point communications channels and MUST only be sent as a
request. A voucherConfigAck command is generated in response to the getVoucherStatus command,
indicating that the edge-server has received the request and will make a best-effort attempt to apply the request
to the list of intended end-clients. Subsequently, as the results of the request become available, the edge-server
MUST generate one or more voucherStatusList commands to report the results to the host.

The propertyId attribute of the class-level element is used to identify the property for which status
information is being requested. The edge-server MUST only include status information associated with that
property in its response.

In addition to other event codes that the edge-server MAY report, the edge-server MAY report the following
event codes, indicating that the requested action was not taken for an end-client.

• If the edge-server determines that an end-client is not registered for the property, the edge-server
MUST report the error using event code S2S_PVE001 Invalid End-Client For Property.

• If the edge-server is unable to report the voucher status of an end-client, the edge-server MUST
report the error using event code S2S_PVE002 Voucher Status Unavailable For End-Client.

40.11.2 Attribute and Element Detail

Table 40.20 getVoucherStatus Attributes

Attribute Restrictions Description

clientType type: t_clientTypes
use: required

Client type; the type of client to which the command
is directed; typically, an edge-server. Wildcards are
not permitted.

clientId type: t_clientId
use: required

Client identifier; the identifier of the client to which
the command is directed; typically, an edge-server.
Wildcards are not permitted.

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

Page 2574 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

NEW CLASS

Table 40.21 getVoucherStatus Sub-Elements

Element Restrictions Description

endClientList minOcc: 1
maxOcc: 1

Contains the list of end-clients. See Table 40.22.

Table 40.22 endClientList Sub-Elements

Element Restrictions Description

endClient minOcc: 1
maxOcc: ∞ Identifies an end-client. See Table 40.23.

Table 40.23 endClient Attributes

Attribute Restrictions Description

endClientType type: t_clientTypes
use: required

End-client type; the type of end-client for which
information is being requested. Wildcards are not
permitted.

endClientId type: t_clientId
use: required

End-client identifier; the identifier of the end-client
for which information is being requested. The
S2S_all and S2S_default wildcards are permitted.

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

 Released: 2016/03/14 Page 2575
© 2016 Gaming Standards Association (GSA)

NEW CLASS

40.12 setVoucherState Command

40.12.1 Command Description
This command is used by a host to set the voucher state of one or more end-clients. The command MUST
only be used with point-to-point communications channels and MUST only be sent as a request. A
voucherConfigAck command is generated in response to the setVoucherState command, indicating that the
edge-server has received the request and will make a best-effort attempt to apply the request to the list of
intended end-clients. Subsequently, as the results of the request become available, the edge-server MUST
generate one or more voucherStatusList commands to report the results to the host.

Data sets, which are included in the setVoucherState command, overwrite any previous information related
to the data sets. Data sets, which are not included, are not affected.

The propertyId attribute of the class-level element is used to identify the property for which voucher states
are being set. The edge-server MUST only set the voucher states for end-clients associated with that property.

In addition to other event codes that the edge-server MAY report, the edge-server MAY report the following
event codes, indicating that the requested action was not taken for an end-client.

• If the edge-server determines that an end-client is not registered for the property, the edge-server
MUST report the error using event code S2S_PVE001 Invalid End-Client For Property.

• If the edge-server is unable to set the voucher state for an end-client, the edge-server MUST report
the error using event code S2S_PVE003 Unable To Set Voucher State For End-Client.

40.12.2 Attribute and Element Detail

Table 40.24 setVoucherState Attributes (Sheet 1 of 2)

Attribute Restrictions Description

clientType type: t_clientTypes
use: required

Client type; the type of client to which the command
is directed; typically, an edge-server. Wildcards are
not permitted.

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

Page 2576 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

NEW CLASS

clientId type: t_clientId
use: required

Client identifier; the identifier of the client to which
the command is directed; typically, an edge-server.
Wildcards are not permitted.

Table 40.25 setVoucherState Sub-Elements

Element Restrictions Description

endClientList minOcc: 1
maxOcc: 1

Contains the list of end-clients. See Table 40.26.

voucherState minOcc: 1
maxOcc: 1

Contains voucher state parameters for the list of
end-clients. See Section 40.7, voucherState Data Set.

Table 40.26 endClientList Sub-Elements

Element Restrictions Description

endClient minOcc: 1
maxOcc: ∞ Identifies an end-client. See Table 40.27.

Table 40.27 endClient Attributes

Attribute Restrictions Description

endClientType type: t_clientTypes
use: required

End-client type; the type of end-client being
configured. Wildcards are not permitted.

endClientId type: t_clientId
use: required

End-client identifier; the identifier of the end-client
being configured. The S2S_all and S2S_default
wildcards are permitted.

Table 40.24 setVoucherState Attributes (Sheet 2 of 2)

Attribute Restrictions Description

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

 Released: 2016/03/14 Page 2577
© 2016 Gaming Standards Association (GSA)

NEW CLASS

40.13 getVoucherConfig Command

40.13.1 Command Description
This command is used by a host to request the current voucher configuration information for one or more
end-clients. The command MUST only be used with point-to-point communications channels and MUST only
be sent as a request. A voucherConfigAck command is generated in response to the getVoucherConfig
command, indicating that the edge-server has received the request and will make a best-effort attempt to apply
the request to the list of intended end-clients. Subsequently, as the results of the request become available, the
edge-server MUST generate one or more voucherConfigList commands to report the results to the host.

The propertyId attribute of the class-level element is used to identify the property for which configuration
information is being requested. The edge-server MUST only include configuration information associated with
that property in its response.

In addition to other event codes that the edge-server MAY report, the edge-server MAY report the following
event codes, indicating that the requested action was not taken for an end-client.

• If the edge-server determines that an end-client is not registered for the property, the edge-server
MUST report the error using event code S2S_PVE001 Invalid End-Client For Property.

• If the edge-server is unable to report the voucher configuration for an end-client, the edge-server
MUST report the error using event code S2S_PVE004 Voucher Configuration Not Available For
End-Client.

40.13.2 Attribute and Element Detail

Table 40.28 getVoucherConfig Attributes

Attribute Restrictions Description

clientType type: t_clientTypes
use: required

Client type; the type of client to which the command
is directed; typically, an edge-server. Wildcards are
not permitted.

clientId type: t_clientId
use: required

Client identifier; the identifier of the client to which
the command is directed; typically, an edge-server.
Wildcards are not permitted.

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

Page 2578 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

NEW CLASS

Table 40.29 getVoucherConfig Sub-Elements

Element Restrictions Description

endClientList minOcc: 1
maxOcc: 1

Contains the list of end-clients. See Table 40.30.

Table 40.30 endClientList Sub-Elements

Element Restrictions Description

endClient minOcc: 1
maxOcc: ∞ Identifies an end-client. See Table 40.31.

Table 40.31 endClient Attributes

Attribute Restrictions Description

endClientType type: t_clientTypes
use: required

End-client type; the type of end-client for which
information is being requested. Wildcards are not
permitted.

endClientId type: t_clientId
use: required

End-client identifier; the identifier of the end-client
for which information is being requested. The
S2S_all and S2S_default wildcards are permitted.

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

 Released: 2016/03/14 Page 2579
© 2016 Gaming Standards Association (GSA)

NEW CLASS

40.14 setVoucherConfig Command

40.14.1 Command Description
This command is used by a host to set the voucher configuration for one or more end-clients. The command
MUST only be used with point-to-point communications channels and MUST only be sent as a request. A
voucherConfigAck command is generated in response to the setVoucherConfig command, indicating that the
edge-server has received the request and will make a best-effort attempt to apply the request to the list of
intended end-clients. Subsequently, as the results of the request become available, the edge-server MUST
generate one or more voucherStatusList commands to report the results to the host.

Data sets, which are included in the setVoucherConfig command, overwrite any previous information related
to the data sets. Data sets, which are not included, are not affected.

The propertyId attribute of the class-level element is used to identify the property for which configuration
information is being set. The edge-server MUST only set configurations for end-clients associated with that
property.

In addition to other event codes that the edge-server MAY report, the edge-server MAY report the following
event codes, indicating that the requested action was not taken for an end-client.

• If the edge-server determines that an end-client is not registered for the property, the edge-server
MUST report the error using event code S2S_PVE001 Invalid End-Client For Property.

• If the edge-server is unable to set the voucher configuration for an end-client, the edge-server MUST
report the error using event code S2S_PVE005 Unable To Set Voucher Configuration For End-
Client.

40.14.2 Attribute and Element Detail

Table 40.32 setVoucherConfig Attributes (Sheet 1 of 2)

Attribute Restrictions Description

clientType type: t_clientTypes
use: required

Client type; the type of client to which the command
is directed; typically, an edge-server. Wildcards are
not permitted.

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

Page 2580 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

NEW CLASS

clientId type: t_clientId
use: required

Client identifier; the identifier of the client to which
the command is directed; typically, an edge-server.
Wildcards are not permitted.

Table 40.33 setVoucherConfig Sub-Elements

Element Restrictions Description

endClientList minOcc: 1
maxOcc: 1

Contains the list of end-clients. See Table 40.34.

voucherConfig minOcc: 1
maxOcc: 1

Contains voucher configuration parameters for the
list of end-clients. See Section 40.8, voucherConfig
Data Set.

Table 40.34 endClientList Sub-Elements

Element Restrictions Description

endClient minOcc: 1
maxOcc: ∞ Identifies an end-client. See Table 40.35.

Table 40.35 endClient Attributes

Attribute Restrictions Description

endClientType type: t_clientTypes
use: required

End-client type; the type of end-client being
configured. Wildcards are not permitted.

endClientId type: t_clientId
use: required

End-client identifier; the identifier of the end-client
being configured. The S2S_all and S2S_default
wildcards are permitted.

Table 40.32 setVoucherConfig Attributes (Sheet 2 of 2)

Attribute Restrictions Description

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

 Released: 2016/03/14 Page 2581
© 2016 Gaming Standards Association (GSA)

NEW CLASS

40.15 reqVoucherStatus Command

40.15.1 Command Description
This command is used by an edge-server to request the current voucher status information for one or more
end-clients. The command MUST only be used with point-to-point communications channels and MUST only
be sent as a request. A voucherConfigAck command is generated in response to the reqVoucherStatus
command, indicating that the host has received the request and will make a best-effort attempt to provide the
current voucher status for the list of intended end-clients. Subsequently, the host MUST generate one or more
setVoucherState commands to report the information to the edge-server.

The propertyId attribute of the class-level element is used to identify the property for which voucher status
information is being requested. The edge-server MUST only include voucher status information for end-
clients associated with that property in its response.

In addition to other event codes that the host MAY report, the host MAY report the following event codes,
indicating that the requested action was not taken for an end-client.

• If the host determines that an end-client is not registered for the property, the host MUST report the
error using event code S2S_PVE001 Invalid End-Client For Property.

• If the host is unable to report the voucher status for an end-client, the host MUST report the error
using event code S2S_PVE002 Voucher Status Unavailable For End-Client.

40.15.2 Attribute and Element Detail

Table 40.36 reqVoucherStatus Attributes

Attribute Restrictions Description

clientType type: t_clientTypes
use: required

Client type; the type of client from which the
command was sent; typically, an edge-server.
Wildcards are not permitted.

clientId type: t_clientId
use: required

Client identifier; the identifier of the client from
which the command was sent; typically, an edge-
server. Wildcards are not permitted.

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

Page 2582 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

NEW CLASS

Table 40.37 reqVoucherStatus Sub-Elements

Element Restrictions Description

endClientList minOcc: 1
maxOcc: 1

Contains the list of end-clients. See Table 40.38.

Table 40.38 endClientList Sub-Elements

Element Restrictions Description

endClient minOcc: 1
maxOcc: ∞ Identifies an end-client. See Table 40.39.

Table 40.39 endClient Attributes

Attribute Restrictions Description

endClientType type: t_clientTypes
use: required

End-client type; the type of end-client for which
information is being requested. Wildcards are not
permitted.

endClientId type: t_clientId
use: required

End-client identifier; the identifier of the end-client
for which information is being requested. The
S2S_all and S2S_default wildcards are permitted.

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

 Released: 2016/03/14 Page 2583
© 2016 Gaming Standards Association (GSA)

NEW CLASS

40.16 voucherStatusList Command

40.16.1 Command Description
This command is used by an edge-server to report the current voucher status information for one or more
end-clients. The command MUST only be used with point-to-point communications channels and MUST only
be sent as a request. A voucherConfigAck command is generated in response to the voucherStatusList
command, indicating that the host has received the command.

The voucherStatusList command is generated by an edge-server to report the results of the
getVoucherStatus, setVoucherState, and setVoucherConfig commands. A voucherStatusList command
MUST also be generated by an edge-server whenever the voucher status of an end-client changes for some
other reason – for example, whenever the state of an end-client is changed locally at the end-client.

The propertyId attribute of the class-level element is used to identify the property for which voucher status
information is being reported. The edge-server MUST only include voucher status information for end-clients
associated with that property in this command.

In addition to other event codes that the host MAY report, the host MAY report the following event codes,
indicating that no action was taken for an end-client.

• If the host determines that an end-client is not registered for the property, the host MUST report the
error using event code S2S_PVE001 Invalid End-Client For Property.

40.16.2 Attribute and Element Detail

Table 40.40 voucherStatusList Attributes

Attribute Restrictions Description

clientType type: t_clientTypes
use: required

Client type; the type of client from which the
command was sent; typically, an edge-server.
Wildcards are not permitted.

clientId type: t_clientId
use: required

Client identifier; the identifier of the client from
which the command was sent; typically, an edge-
server. Wildcards are not permitted.

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

Page 2584 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

NEW CLASS

Table 40.41 voucherStatusList Sub-Elements

Element Restrictions Description

endClientStatus minOcc: 1
maxOcc: ∞ Contains the voucher status for an end-client. See

Table 40.42.

Table 40.42 endClientStatus Attributes

Attribute Restrictions Description

endClientType type: t_clientTypes
use: required

End-client type; the type of end-client for which
information is being reported. Wildcards are not
permitted.

endClientId type: t_clientId
use: required

End-client identifier; the identifier of the end-client
for which information is being reported. The
S2S_all and S2S_default wildcards are permitted.

Table 40.43 endClientStatus Sub-Elements

Element Restrictions Description

voucherStatus minOcc: 1
maxOcc: 1

Contains the voucher status for an end-client. See
Section 40.9, voucherStatus Data Set.

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

 Released: 2016/03/14 Page 2585
© 2016 Gaming Standards Association (GSA)

NEW CLASS

40.17 reqVoucherConfig Command

40.17.1 Command Description
This command is used by an edge-server to request the current voucher configuration information for one or
more end-clients. The command MUST only be used with point-to-point communications channels and
MUST only be sent as a request. A voucherConfigAck command is generated in response to the
reqVoucherConfig command, indicating that the host has received the request and will make a best-effort
attempt to provide the current voucher configuration information for the list of intended end-clients.
Subsequently, the host MUST generate one or more setVoucherConfig commands to report the information
to the edge-server.

The propertyId attribute of the class-level element is used to identify the property for which configuration
information is being requested. The host MUST only include configuration information for end-clients
associated with that property in its response.

In addition to other event codes that the host MAY report, the host MAY report the following event codes,
indicating that the requested action was not taken for an end-client.

• If the host determines that an end-client is not registered for the property, the host MUST report the
error using event code S2S_PVE001 Invalid End-Client For Property.

• If the host is unable to report the voucher configuration for an end-client, the host MUST report the
error using event code S2S_PVE004 Voucher Configuration Not Available For End-Client.

40.17.2 Attribute and Element Detail

Table 40.44 reqVoucherConfig Attributes

Attribute Restrictions Description

clientType type: t_clientTypes
use: required

Client type; the type of client from which the
command was sent; typically, an edge-server.
Wildcards are not permitted.

clientId type: t_clientId
use: required

Client identifier; the identifier of the client from
which the command was sent; typically, an edge-
server. Wildcards are not permitted.

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

Page 2586 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

NEW CLASS

Table 40.45 reqVoucherConfig Sub-Elements

Element Restrictions Description

endClientList minOcc: 1
maxOcc: 1

Contains the list of end-clients. See Table 40.46.

Table 40.46 endClientList Sub-Elements

Element Restrictions Description

endClient minOcc: 1
maxOcc: ∞ Identifies an end-client. See Table 40.47.

Table 40.47 endClient Attributes

Attribute Restrictions Description

endClientType type: t_clientTypes
use: required

End-client type; the type of end-client for which
information is being requested. Wildcards are not
permitted.

endClientId type: t_clientId
use: required

End-client identifier; the identifier of the end-client
for which information is being requested. The
S2S_all and S2S_default wildcards are permitted.

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

 Released: 2016/03/14 Page 2587
© 2016 Gaming Standards Association (GSA)

NEW CLASS

40.18 voucherConfigList Command

40.18.1 Command Description
This command is used by an edge-server to report the current voucher configuration information for one or
more end-clients. The command MUST only be used with point-to-point communications channels and
MUST only be sent as a request. A voucherConfigAck command is generated in response to the
voucherConfigList command, indicating that the host has received the command.

The voucherConfigList command is generated by an edge-server to report the results of the
getVoucherConfig command. A voucherConfigList command MUST also be generated by an edge-server
whenever the voucher configuration of an end-client changes for some other reason – for example, whenever
the configuration of an end-client is changed locally at the end-client.

The propertyId attribute of the class-level element is used to identify the property for which configuration
information is being reported. The edge-server MUST only include configuration information for end-clients
associated with that property in this command.

In addition to other event codes that the host MAY report, the host MAY report the following event codes,
indicating that no action was taken for an end-client.

• If the host determines that an end-client is not registered for the property, the host MUST report the
error using event code S2S_PVE001 Invalid End-Client For Property.

40.18.2 Attribute and Element Detail

Table 40.48 voucherConfigList Attributes

Attribute Restrictions Description

clientType type: t_clientTypes
use: required

Client type; the type of client from which the
command was sent; typically, an edge-server.
Wildcards are not permitted.

clientId type: t_clientId
use: required

Client identifier; the identifier of the client from
which the command was sent; typically, an edge-
server. Wildcards are not permitted.

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

Page 2588 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

NEW CLASS

Table 40.49 voucherConfigList Sub-Elements

Element Restrictions Description

endClientConfig minOcc: 1
maxOcc: ∞ Contains the voucher configuration for an end-

client. See Table 40.50.

Table 40.50 endClientConfig Attributes

Attribute Restrictions Description

endClientType type: t_clientTypes
use: required

End-client type; the type of end-client for which
information is being reported. Wildcards are not
permitted.

endClientId type: t_clientId
use: required

End-client identifier; the identifier of the end-client
for which information is being reported. The
S2S_all and S2S_default wildcards are permitted.

Table 40.51 endClientConfig Sub-Elements

Element Restrictions Description

voucherConfig minOcc: 1
maxOcc: 1

Contains the voucher configuration for an end-client.
See Section 40.8, voucherConfig Data Set.

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

 Released: 2016/03/14 Page 2589
© 2016 Gaming Standards Association (GSA)

NEW CLASS

40.19 voucherConfigAck Command

40.19.1 Command Description
This command is used by a host or edge-server to acknowledge the receipt of a request, indicating that the
host or edge-server will make a best effort attempt to apply the request. The command MUST only be used
with point-to-point communications channels and MUST only be sent as a response. The voucherConfigAck
command is generated in response to the getVoucherStatus, setVoucherState, getVoucherConfig,
setVoucherConfig, reqVoucherStatus, voucherStatusList, reqVoucherConfig, and voucherConfigList
commands.

The propertyId attribute of the class-level element is used to identify the property for which a command is
being acknowledged. The host MUST include the property specified in the original request in its
acknowledgement.

40.19.2 Attribute and Element Detail

Table 40.52 voucherConfigAck Attributes

Attribute Restrictions Description

clientType type: t_clientTypes
use: required

Client type; the type of client referenced in the
clientType attribute of the request. Wildcards are
not permitted.

clientId type: t_clientId
use: required

Client identifier; the identifier of the client
referenced in the clientId attribute of the request.
Wildcards are not permitted.

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

Page 2590 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

NEW CLASS

40.20 getValidationIds Command

40.20.1 Command Description
This command is used by an edge-server to request validation identifiers for an end-client. The command
MUST only be used with point-to-point communications channels and MUST only be sent as a request. A
validationIdList command is generated in response to the getValidationIds command.

All vouchers that have been issued by the end-client MUST be acknowledged by the host before requests for
new validation identifiers are generated. Requests for new validation identifiers MUST NOT be generated
while the voucher functionality is disabled by the host.

Provided that all vouchers issued by the end-client have been acknowledged by the host and the voucher
functionality for the end-client is enabled, the edge-server MUST generate a getValidationIds request under
the following circumstances:

• When the number of validation identifiers stored for the end-client falls below the minLevelValIds,

• When the valIdListRefresh or valIdListLife time period expires, or

• When the voucher functionality is enabled by the host after being disabled.

Once the edge-server has determined that the validation identifiers need to be refreshed, the edge-server
MUST make a best effort to retry the getValidationIds command at the frequency set in the timeToLive
configuration parameter until a valid validationIdList command is received. Once the valIdListLife time
period has expired, the edge-server MUST set the validationIdsExpired status attribute to true.

Provided that the valIdListLife time period has not expired, the edge-server may continue to allow the end-
client to issue vouchers until all available validation identifiers have been consumed. However, after the
voucher functionality is enabled by the host after being disabled, the edge-server MUST NOT allow the end-
client to issue any vouchers until the validation identifiers have been refreshed—that is, the edge-server MUST
treat the existing validation identifiers as if the valIdListLife time period had expired, setting the
validationIdsExpired status attribute to true.

The numValidationIds attribute of the getValidationIds command MUST be set to the difference between
the maxValIds configuration parameter and the validationIdsRemaining status attribute, but not less than 0
(zero). The valIdListExpired attribute MUST be set to the value of the validationIdsExpired status
attribute. And, the validationListId attribute MUST be set to the value of the validationListId status
attribute.

When the allowVoucherIssue configuration attribute is set to false, the edge-server MUST NOT generate
any getValidationIds commands for the end-client.

In addition to other errors that the host MAY report, the following error conditions MAY be reported by the
host, indicating that no action was taken:

• If the host determines that the endClientType is invalid, the host MUST report the error using error
code S2S_PVX002 Invalid End-Client Type.

• If the host determines that the endClientId is invalid for the property, the host MUST report the
error using error code S2S_PVX003 Invalid End-Client for Property.

More information about managing validation identifiers can be found in the G2S protocol.

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

 Released: 2016/03/14 Page 2591
© 2016 Gaming Standards Association (GSA)

NEW CLASS

40.20.1.1 Duplicate Commands

A getValidationIds command is not considered to be logically equivalent to any previous
getValidationIds command. The host MUST treat each getValidationIds command as if it was logically
unique.

40.20.2 Attribute and Element Detail

Table 40.53 getValidationIds Attributes

Attribute Restrictions Description

clientType type: t_clientTypes
use: required

Client type; the type of client from which the
command was sent; typically, an edge-server.
Wildcards are not permitted.

clientId type: t_clientId
use: required

Client identifier; the identifier of the client from
which the command was sent; typically, an edge-
server. Wildcards are not permitted.

endClientType type: t_clientTypes
use: required

End-client type; type of end-client requiring
validation identifiers. Wildcards are not
permitted.

endClientId type: t_clientId
use: required

End-client identifier; client identifier of the end-
client requiring validation identifiers. Wildcards
are not permitted.

validationListId type: t_validationListId
use: required

The validationListId received in the last
validationIdList command for the end-client;
set to 0 (zero) if no such command has been
received.

numValidationIds type: xs:int
use: optional
default: 0
minIncl: 0

The number of validation identifiers required to
restore the number of available validation
identifiers to the maxValIds level, but not less
than 0 (zero).

valIdListExpired type: xs:boolean
use: optional
default: false

Indicates whether the valIdListLife time
period is considered to have expired; set to true
if no validation identifiers have ever been
received for the end-client.

configurationId type: t_configurationId
use: optional
default: 0

Configuration identifier; used by the edge-server
to determine whether the correct configuration
is in use by the end-client.

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

Page 2592 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

NEW CLASS

40.21 validationIdList Command

40.21.1 Command Description
This command is used by a host to update the set of validation identifiers for an end-client. The command
MUST only be used with point-to-point communications channels and MUST only be sent as a response. The
validationIdList command is generated in response to a getValidationIds command.

The host may use the deleteCurrent attribute to indicate that all remaining validation identifiers should be
discarded before adding the new validation identifiers provided in the validationIdList command. If the
deleteCurrent attribute is set to true, all remaining validation identifiers MUST be discarded. If the
deleteCurrent attribute is set to false, all remaining validation identifiers MUST be retained. Validation
identifiers MUST be consumed in the order provided. Any new validation identifiers provided in the
validationIdList command MUST be consumed after any validation identifiers retained for the end-client.
If any validation identifiers are found in the validationIdList command are already recorded for the end-
client, the ordering of the validation identifiers MUST NOT be changed, however, the seed values associated
with the validation identifiers MUST be updated.

When the deleteCurrent attribute is set to false, the host MUST include the number of validation identifiers
specified in the numValidationIds attribute. When the deleteCurrent attribute is set to true, the host MUST
include the number of validation identifiers specified in the maxValIds configuration parameter.

If any of the new validation identifiers or seed values cannot be used – for example, a validation identifier
includes non-numeric characters or the host provided more validation identifiers than required – the entire
new set of validation identifiers MUST NOT be used – the edge-server MUST generate event S2S_PVE010
Validation Data Error and the edge-server MUST NOT use any of the new validation identifiers, delete any
remaining validation identifiers, or update the validationListId, validationIdsRemaining, or
validationIdsExpired status attributes.

After successfully recording a new set of validation identifiers, the edge-server MUST update the voucher
status to indicate latest validationListId received from the host and the correct number of
validationIdsRemaining; the edge-server MUST set validationIdsExpired status attribute to false and
restart any timers associated with the valIdsListRefresh and valIdsListLife time periods; and, the edge-
server MUST generate event S2S_PVE011 Validation Data Updated.

40.21.1.1 Duplicate Commands

A validationIdList command is not considered to be logically equivalent to any previous
validationIdList command. The host MUST treat each validationIdList command as if it was logically
unique.

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

 Released: 2016/03/14 Page 2593
© 2016 Gaming Standards Association (GSA)

NEW CLASS

40.21.2 Attribute and Element Detail

Table 40.54 validationIdList Attributes

Attribute Restrictions Description

clientType type: t_clientTypes
use: required

Client type; the type of client to which the
command is directed; typically, an edge-server.
Wildcards are not permitted.

clientId type: t_clientId
use: required

Client identifier; the identifier of the client to
which the command is directed; typically, an edge-
server. Wildcards are not permitted.

endClientType type: t_clientTypes
use: required

End-client type; type of end-client requiring
validation identifiers. Wildcards are not permitted.

endClientId type: t_clientId
use: required

End-client identifier; client identifier of the end-
client requiring validation identifiers. Wildcards
are not permitted.

validationListId type: t_validationListId
use: required

Host-assigned identifier for the set of validation
identifiers.

deleteCurrent type: xs:boolean
use: optional
default: false

Indicates whether all remaining validation
identifiers for the end-client should be discarded.

Table 40.55 validationIdList Sub-Elements

Element Restrictions Description

validationId minOcc: 0
maxOcc: ∞ Contains a validation identifier and seed value. See

Table 40.56.

Table 40.56 validationId Attributes (Sheet 1 of 2)

Attribute Restrictions Description

validationId type: t_validationId
use: required

Validation identifier.

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

Page 2594 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

NEW CLASS

validationSeed type: t_validationSeed
use: required

Manual authentication seed value.

Table 40.56 validationId Attributes (Sheet 2 of 2)

Attribute Restrictions Description

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

 Released: 2016/03/14 Page 2595
© 2016 Gaming Standards Association (GSA)

NEW CLASS

40.22 issueVoucher Command

40.22.1 Command Description
This command is used by an edge-server to report that a voucher has been issued by an end-client. The
command MUST only be used with point-to-point communications channels and MUST only be sent as a
request. An issueVoucherAck command is generated in response to the issueVoucher command.

The issueVoucher command SHOULD be generated as soon as the end-client is irreversibly committed to
the voucher issuance operation and the associated credits have been removed from the credit meter. The end-
client SHOULD NOT wait until the final results of the print operation are known. Waiting for the final results
of the print operation could cause significant delays in reporting that the voucher issuance operation had taken
place. Presentation errors MAY be reported by setting the endClientException attribute of the issueVoucher
command to 1 (one). However, reporting any such errors SHOULD NOT delay the reporting of the voucher
issuance operation.

The edge-server MUST make a best effort to retry the issueVoucher command at the frequency set in the
timeToLive configuration parameter until a valid issueVoucherAck command is received.

When issuing vouchers for non-cashable credits, the following rules MUST be applied:

• If the allowNonCashOut configuration parameter is set to true:

• If there is no expiration associated with the non-cashable credits, the end-client MUST
produce the voucher for the non-cashable credits and the expireNonCash configuration
parameter MUST be used to determine the expiration period for the voucher (not the
expiration date/time for the non-cashable credits).

• If there is an expiration associated with the non-cashable credits and the current date/time is
the same as or prior to that expiration, the end-client MUST produce the voucher for the
non-cashable credits.

• If there is an expiration associated with the non-cashable credits and the current date/time is
after that expiration, the end-client MUST NOT produce a voucher for the non-cashable
credits.

• If the allowNonCashOut configuration parameter is set to false, the end-client MUST NOT produce
a voucher for the non-cashable credits.

When the combineCashableOut configuration attribute is set to true, the end-client MUST convert any
promotional credits to cashable credits when issuing a voucher—a single combined voucher for cashable
credits MUST be issued. When the combineCashableOut configuration attribute is set to false, the end-client
MUST NOT convert any promotional credits to cashable credits when issuing a voucher—separate vouchers
for cashable and promotional credits MUST be issued, if necessary.

The idReaderType, idNumber, and playerId attributes of the issueVoucher command MUST specify the
player currently identified by the ID reader associated with voucher the functionality.

The propertyId attribute of the class-level element is used to identify the property for which a voucher
issuance is being reported. The edge-server MUST only report voucher issuances for end-clients associated
with that property in this command.

More information about recording voucher issuances can be found in the G2S protocol.

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

Page 2596 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

NEW CLASS

40.22.1.1 Duplicate Commands

An issueVoucher command is considered to be logically equivalent to a previous issueVoucher command if
the host detects that the transactionId associated with the request was reported in a previous issueVoucher
command for the same end-client. In such cases, the host MUST generate a logically equivalent
issueVoucherAck command in response to the issueVoucher command.

The host SHOULD also verify that the validationId has not been reported in a previous issueVoucher
command. If the validationId has been previously reported and is not a duplicate, the host SHOULD also, if
possible, alert the operator to the duplicate voucher.

40.22.2 Attribute and Element Detail

Table 40.57 issueVoucher Attributes (Sheet 1 of 3)

Attribute Restrictions Description

clientType type: t_clientTypes
use: required

Client type; the type of client from which the
command was sent; typically, an edge-server.
Wildcards are not permitted.

clientId type: t_clientId
use: required

Client identifier; the identifier of the client
from which the command was sent; typically,
an edge-server. Wildcards are not permitted.

endClientType type: t_clientTypes
use: required

End-client type; type of end-client that
issued the voucher. Wildcards are not
permitted.

endClientId type: t_clientId
use: required

End-client identifier; client identifier of the
end-client that issued the voucher. Wildcards
are not permitted.

transactionId type: t_transactionId
use: required

Transaction identifier.
(issueVoucher.transactionId)

idReaderType type: t_idReaderTypes
use: optional
default: S2S_none

Type of ID reader used to identify the player.
(issueVoucher.idReaderType)

idNumber type: t_idNumber
use: optional
default: <empty>

ID number associated with the player.
(issueVoucher.idNumber)

playerId type: t_playerId
use: optional
default: <empty>

Player identifier. (issueVoucher.playerId)

validationId type: t_validationId
use: required

Validation identifier.
(issueVoucher.validationId)

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

 Released: 2016/03/14 Page 2597
© 2016 Gaming Standards Association (GSA)

NEW CLASS

voucherAmt type: t_meterValue
use: required

Voucher amount.
(issueVoucher.vouchetAmt)

creditType type: t_creditTypes
use: required

Type of credits; cashable, promotional, or
non-cashable. (issueVoucher.creditType)

voucherSource type: t_voucherSources
use: optional
default: S2S_endClient

Indicates the source of the voucher; end-
client or system.
(issueVoucher.voucherSequence)

largeWin type: xs:boolean
use: optional
default: false

Indicates whether the voucher was issued
because the amount won exceeded the end-
client’s large win limit.
(issueVoucher.largeWin)

voucherSequence type: xs:int
use: optional
default: 0
minIncl: 0

The issuing end-client’s internal voucher
sequence number printed on the voucher.
(issueVoucher.voucherSequence)

expireCredits type: xs:boolean
use: optional
default: false

Indicates whether non-cashable credits have
an associated expiration date/time; ignored
when creditType is not set to
S2S_nonCashable.
(issueVoucher.expireCredits)

expireDateTime type: t_dateTime
use: optional
default: 2000-01-
01T00:00:00.000-00:00

Expiration date/time associated with non-
cashable credits; ignored when creditType
is not set to S2S_nonCashable or
expireCredits is set to false.
(issueVoucher.expireDateTime)

transferAmt type: t_meterValue
use: optional
default: 0

Actual amount transferred.
(issueVoucher.transferAmt)

transferDateTime type: t_dateTime
use: required

Date/time that the transfer record was
updated.
(issueVoucher.transferDateTime)

expireDays type: xs:int
use: optional
default: -1
minIncl: -1

Number of days before the voucher expires;
ignored if expireCredits is set to true; -1
(negative one) indicates that there is no
expiration period.
(issueVoucher.expireDays)

endClientAction type: t_voucherClientActions
use: required

Indicates whether the end-client issued,
stacked or returned the voucher.
(issueVoucher.egmAction)

Table 40.57 issueVoucher Attributes (Sheet 2 of 3)

Attribute Restrictions Description

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

Page 2598 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

NEW CLASS

endClientException type: t_voucherClientExcs
use: optional
default: 0

End-client exception code; 0 (zero) indicates
no end-client exceptions.
(issueVoucher.egmException)

Table 40.57 issueVoucher Attributes (Sheet 3 of 3)

Attribute Restrictions Description

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

 Released: 2016/03/14 Page 2599
© 2016 Gaming Standards Association (GSA)

NEW CLASS

40.23 issueVoucherAck Command

40.23.1 Command Description
This command is used by a host to acknowledge the issuance of a voucher by an end-client. The command
MUST only be used with point-to-point communications channels and MUST only be sent as a response. The
issueVoucherAck command is generated in response to an issueVoucher command.

The host MUST make a best effort to acknowledge the issueVoucher command. Failure to acknowledge the
issueVoucher command will cause the edge-server to retry the issueVoucher command indefinitely.

The propertyId attribute of the class-level element is used to identify the property for which a voucher
issuance is being acknowledged. The host MUST only include acknowledgements for end-clients associated
with that property in this command.

40.23.1.1 Duplicate Commands

An issueVoucherAck command is considered to be logically equivalent to a previous issueVoucherAck
command if the edge-server detects that the voucher issuance request associated with the transactionId was
already acknowledged—that is, the state of the transaction request is no longer S2S_issueSent. Duplicate
issueVoucherAck commands can be ignored.

40.23.2 Attribute and Element Detail

Table 40.58 issueVoucherAck Attributes

Attribute Restrictions Description

clientType type: t_clientTypes
use: required

Client type; the type of client to which the command
is directed; typically, an edge-server. Wildcards are
not permitted.

clientId type: t_clientId
use: required

Client identifier; the identifier of the client to which
the command is directed; typically, an edge-server.
Wildcards are not permitted.

endClientType type: t_clientTypes
use: required

End-client type; type of end-client that issued the
voucher. Wildcards are not permitted.

endClientId type: t_clientId
use: required

End-client identifier; client identifier of the end-
client that issued the voucher. Wildcards are not
permitted.

transactionId type: t_transactionId
use: required

Transaction identifier.
(issueVoucherAck.transactionId)

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

Page 2600 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

NEW CLASS

40.24 redeemVoucher Command

40.24.1 Command Description
This command is used by an edge-server to request authorization for an end-client to redeem a voucher. The
command MUST only be used with point-to-point communications channels and MUST only be sent as a
request. An authorizeVoucher command is generated in response to the redeemVoucher command.

If the request is not authorized within the time period specified in the voucherHoldTime configuration
attribute, the end-client MUST return the voucher and the edge-server MUST generate a commitVoucher
command indicating that the voucher was returned due to a timeout (endClientException = "5"). If an
authorizeVoucher command is received after the voucher has been returned (or, in general, at any time a
voucher is not being held in escrow), the edge-server MUST ignore the authorizeVoucher command.

While waiting for the voucherHoldTime to expire, the end-client MUST make a best effort to retry the
redeemVoucher command at the frequency set in the timeToLive configuration attribute until a valid
authorizeVoucher command is received.

After generating a redeemVoucher command and the voucher has stacked or returned, the edge-server MUST
always generate a commitVoucher command to report the final disposition of the voucher redemption request.
Even if the edge-server does not receive an authorizeVoucher command or receives an error in response to
the redeemVoucher command, the edge-server MUST still generate a commitVoucher command for the host
to confirm the outcome of the redemption request.

The idReaderType, idNumber, and playerId attributes MUST specify the player currently identified by the ID
reader device associated with the voucher functionality.

When the allowVoucherRedeem configuration attribute is set to false, the edge-server MUST NOT generate
any redeemVoucher commands.

The propertyId attribute of the class-level element is used to identify the property for which a voucher
redemption is being requested. The edge-server MUST only include voucher redemption requests for end-
clients associated with that property in this command.

In addition to other errors that the host MAY report, the following error conditions MAY be reported by the
host, indicating that no action was taken, in which case, the redemption MUST be aborted with the
endClientException attribute set to 2, indicating a redemption error from host – voucher returned:

• If the host determines that the endClientType is invalid, the host MUST report the error using error
code S2S_PVX002 Invalid End-Client Type.

• If the host determines that the endClientId is invalid for the property, the host MUST report the
error using error code S2S_PVX003 Invalid End-Client for Property.

• If the host determines that the idReaderType is invalid, the host MUST report the error using error
code S2S_GBX034 Invalid ID Reader Type.

More information about voucher redemptions can be found in the G2S protocol.

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

 Released: 2016/03/14 Page 2601
© 2016 Gaming Standards Association (GSA)

NEW CLASS

40.24.1.1 Duplicate Commands

A redeemVoucher command is considered to be logically equivalent to a previous redeemVoucher command if
the host detects that the transactionId associated with the redemption request was reported in a previous
redeemVoucher or commitVoucher command for the same end-client. In such cases, the host MUST generate a
logically equivalent authorizeVoucher command in response to the redeemVoucher command.

40.24.2 Attribute and Element Detail

Table 40.59 redeemVoucher Attributes

Attribute Restrictions Description

clientType type: t_clientTypes
use: required

Client type; the type of client from which the
command was sent; typically, an edge-server.
Wildcards are not permitted.

clientId type: t_clientId
use: required

Client identifier; the identifier of the client from
which the command was sent; typically, an edge-
server. Wildcards are not permitted.

endClientType type: t_clientTypes
use: required

End-client type; type of end-client that originated
the redemption request. Wildcards are not
permitted.

endClientId type: t_clientId
use: required

End-client identifier; client identifier of the end-
client that originated the redemption request.
Wildcards are not permitted.

transactionId type: t_transactionId
use: required

Transaction identifier.
(redeemVoucher.transactionId)

idReaderType type: t_idReaderTypes
use: optional
default: S2S_none

Type of ID reader used to identify the player.
(redeemVoucher.idReaderType)

idNumber type: t_idNumber
use: optional
default: <empty>

ID number associated with the player.
(redeemVoucher.idNumber)

playerId type: t_playerId
use: optional
default: <empty>

Player identifier. (redeemVoucher.playerId)

validationId type: t_validationId
use: required

Validation identifier.
(redeemVoucher.validationId)

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

Page 2602 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

NEW CLASS

40.25 authorizeVoucher Command

40.25.1 Command Description
This command is used by a host to authorize (or deny) a voucher redemption request for an end-client. The
command MUST only be used with point-to-point communications channels and MUST only be sent as a
response. The authorizeVoucher command is generated in response to a redeemVoucher command.

To authorize the redemption of a voucher, the host MUST set the voucherAmt to a non-zero value and MUST
set the hostException attribute to 0 (zero). The creditType, voucherSource, largeWin, voucherSequence,
expireCredits, and expireDateTime attributes MUST be set to the semantically correct values for the
voucher being redeemed.

To deny redemption of a voucher, the host MUST set the voucherAmt to 0 (zero) and MUST set the
hostException attribute to a non-zero value indicating the reason for denial. The creditType,
voucherSource, largeWin, voucherSequence, expireCredits, and expireDateTime attributes are not
relevant and may be set to any syntactically correct values.

The host can set the voucherSource attribute to S2S_systemIssued to indicate that the voucher was issued by
the system (typically, for promotional purposes) or S2S_endClientIssued to indicate the voucher was issued
by an end-client, such as an EGM or kiosk. This feature can be used in jurisdictions where the expense for
end-client-issued vouchers is deducted at the time of redemption. In such situations, system-issued vouchers
are not deductible and, therefore, are accounted for separately from end-client-issued vouchers. In jurisdictions
where this is not an issue, all vouchers can be redeemed and accounted for as end-client-issued vouchers.

The host may use the hostAction attribute to force an end-client to stack a voucher that is not valid or to
force an end-client to return the voucher following a valid redemption. If the host authorizes redemption and
the end-client is unable to redeem the voucher for any reason, the end-client MUST return the voucher
regardless of the hostAction value. The host should use this attribute with extreme caution. The hostAction
attribute may be set to one of three values:

• S2S_endClientAction tells the end-client to perform its normal action of stacking or returning a
voucher; for example, stacking a redeemed voucher and returning all others.

• S2S_stack tells the end-client to stack a voucher following successful completion of the
authorizeVoucher command.

• If the host does not authorize redemption (i.e. hostException is set to a non-zero value), the
end-client MUST still stack the voucher, if possible.

• If the host authorizes redemption of the voucher and the end-client is unable to stack the
voucher for any reason, the end-client MUST NOT redeem the voucher.

• If the host authorizes redemption of the voucher and the end-client is unable to redeem the
voucher for any reason, the end-client MUST NOT stack the voucher.

• S2S_return tells the end-client to return the voucher regardless of whether it was successfully
redeemed or not. If hostAction is set to S2S_return, the end-client MUST NOT stack the voucher
under any circumstances.

The endClientAction attribute indicates the final disposition of the voucher—that is, whether the voucher
was stacked or returned. If the voucher was stacked by the end-client, the endClientAction attribute MUST
be set to S2S_redeemed. Otherwise, if the voucher was returned (not stacked) by the end-client, the

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

 Released: 2016/03/14 Page 2603
© 2016 Gaming Standards Association (GSA)

NEW CLASS

endClientAction attribute MUST be set to S2S_returned. The endClientAction attribute MUST be set
based on the actual action performed by the end-client, not the action requested by the host in the hostAction
attribute.

When a voucher redemption is authorized, the host MUST record that a redemption request is pending for the
voucher. Until a commitVoucher command is received or the status of the voucher is manually reset, additional
redemptions MUST NOT be permitted for that voucher by the host.

After the end-client has transferred any required credits to the credit meter and the voucher has been stacked
or returned, the edge-server MUST generate a commitVoucher command. In all cases, following the generation
of a redeemVoucher command, the edge-server MUST generate a commitVoucher command to report the final
results of the voucher redemption request, even if no funds were transferred.

The propertyId attribute of the class-level element is used to identify the property for which a voucher
redemption is being authorized or denied. The host MUST only include authorizations and denials for end-
clients associated with that property in this command.

40.25.1.1 Duplicate Commands

An authorizeVoucher command is considered to be logically equivalent to a previous authorizeVoucher
command if the edge-server detects that the redemption request associated with the transactionId was
already authorized or denied—that is, the state of the redemption request is no longer S2S_redeemSent.
Duplicate authorizeVoucher commands MUST be ignored.

40.25.2 Attribute and Element Detail

Table 40.60 authorizeVoucher Attributes (Sheet 1 of 2)

Attribute Restrictions Description

clientType type: t_clientTypes
use: required

Client type; the type of client to which the
command is directed; typically, an edge-server.
Wildcards are not permitted.

clientId type: t_clientId
use: required

Client identifier; the identifier of the client to
which the command is directed; typically, an
edge-server. Wildcards are not permitted.

endClientType type: t_clientTypes
use: required

End-client type; type of end-client that
originated the redemption request. Wildcards
are not permitted.

endClientId type: t_clientId
use: required

End-client identifier; client identifier of the
end-client that originated the redemption
request. Wildcards are not permitted.

transactionId type: t_transactionId
use: required

Transaction identifier.
(authorizeVoucher.transactionId)

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

Page 2604 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

NEW CLASS

validationId type: t_validationId
use: required

Validation identifier.
(authorizeVoucher.validationId)

voucherAmt type: t_meterValue
use: required

Voucher amount.
(authorizeVoucher.vouchetAmt)

creditType type: t_creditTypes
use: required

Type of credits; cashable, promotional, or non-
cashable. (authorizeVoucher.creditType)

voucherSource type: t_voucherSources
use: optional
default: S2S_endClient

Indicates the source of the voucher; end-client
or system.
(authorizeVoucher.voucherSequence)

largeWin type: xs:boolean
use: optional
default: false

Indicates whether the voucher was issued
because the amount won exceeded the end-
client’s large win limit.
(authorizeVoucher.largeWin)

voucherSequence type: xs:int
use: optional
default: 0
minIncl: 0

The issuing end-client’s internal voucher
sequence number printed on the voucher.
(authorizeVoucher.voucherSequence)

expireCredits type: xs:boolean
use: optional
default: false

Indicates whether non-cashable credits have an
associated expiration date/time; ignored when
creditType is not set to S2S_nonCashable.
(authorizeVoucher.expireCredits)

expireDateTime type: t_dateTime
use: optional
default: 2000-01-
01T00:00:00.000-00:00

Expiration date/time associated with non-
cashable credits; ignored when creditType is
not set to S2S_nonCashable or expireCredits
is set to false.
(authorizeVoucher.expireDateTime)

hostAction type: t_voucherHostActions
use: optional
default:
S2S_endClientAction

Indicates whether the host prefers the voucher
to be stacked, returned, or that the end-client
determines the appropriate action.
(authorizeVoucher.hostAction)

hostException type: t_voucherHostExcs
use: optional
default: 0

Exception code set by host.
(authorizeVoucher.hostException)

Table 40.60 authorizeVoucher Attributes (Sheet 2 of 2)

Attribute Restrictions Description

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

 Released: 2016/03/14 Page 2605
© 2016 Gaming Standards Association (GSA)

NEW CLASS

40.26 commitVoucher Command

40.26.1 Command Description
This command is used by an edge-server to report the final results of a voucher redemption request to the
host. The command MUST NOT be generated until all payments associated with the voucher redemption
request have been made. The command MUST only be used with point-to-point communications channels
and MUST only be sent as a request. A commitVoucherAck command is generated in response to the
commitVoucher command.

The commitVoucher command is generated regardless of whether the redemption was successful. If
unsuccessful, the transferAmt attribute MUST be set to 0 (zero) and the endClientException MUST be set
to a non-zero value. If successful, the transferAmt attribute MUST be set to the actual amount transferred
and the endClientException attribute MUST be set to 0 (zero). If the redemption was unsuccessful, the host
MUST reset the status of the voucher so that it can be redeemed elsewhere.

The edge-server MUST make a best effort to retry the commitVoucher command at the frequency specified in
the timeToLive configuration parameter for the end-client until a valid commitVoucherAck command is
received.

The propertyId attribute of the class-level element is used to identify the property for which the final results
of the redemption request are being reported. The edge-server MUST only include results for end-clients
associated with that property in this command.

40.26.1.1 Duplicate Commands

A commitVoucher command is considered to be logically equivalent to a previous commitVoucher command if
the host detects that the transactionId associated with the command was reported in a previous
commitVoucher command for the same end-client. In such cases, the host MUST generate a logically
equivalent commitVoucherAck command in response to the commitVoucher command.

40.26.2 Attribute and Element Detail

Table 40.61 commitVoucher Attributes (Sheet 1 of 3)

Attribute Restrictions Description

clientType type: t_clientTypes
use: required

Client type; the type of client from which the
command was sent; typically, an edge-server.
Wildcards are not permitted.

clientId type: t_clientId
use: required

Client identifier; the identifier of the client
from which the command was sent; typically,
an edge-server. Wildcards are not permitted.

endClientType type: t_clientTypes
use: required

End-client type; type of end-client that
originated the redemption request. Wildcards
are not permitted.

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

Page 2606 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

NEW CLASS

endClientId type: t_clientId
use: required

End-client identifier; client identifier of the
end-client that originated the redemption
request. Wildcards are not permitted.

transactionId type: t_transactionId
use: required

Transaction identifier; assigned by the end-
client. (commitVoucher.transactionId)

validationId type: t_validationId
use: required

Validation identifier.
(commitVoucher.validationId)

voucherAmt type: t_meterValue
use: required

Voucher amount.
(commitVoucher.vouchetAmt)

creditType type: t_creditTypes
use: required

Type of credits; cashable, promotional, or
non-cashable. (commitVoucher.creditType)

voucherSource type: t_voucherSources
use: optional
default: S2S_endClient

Indicates the source of the voucher; end-
client or system.
(commitVoucher.voucherSequence)

largeWin type: xs:boolean
use: optional
default: false

Indicates whether the voucher was issued
because the amount won exceeded the end-
client’s large win limit.
(commitVoucher.largeWin)

voucherSequence type: xs:int
use: optional
default: 0
minIncl: 0

The issuing end-client’s internal voucher
sequence number printed on the voucher.
(commitVoucher.voucherSequence)

expireCredits type: xs:boolean
use: optional
default: false

Indicates whether non-cashable credits have
an associated expiration date/time; ignored
when creditType is not set to
S2S_nonCashable.
(commitVoucher.expireCredits)

expireDateTime type: t_dateTime
use: optional
default: 2000-01-
01T00:00:00.000-00:00

Expiration date/time associated with non-
cashable credits; ignored when creditType
is not set to S2S_nonCashable or
expireCredits is set to false.
(commitVoucher.expireDateTime)

transferAmt type: t_meterValue
use: optional
default: 0

Actual amount transferred.
(commitVoucher.transferAmt)

transferDateTime type: t_dateTime
use: required

Date/time that the transaction was
committed.
(commitVoucher.transferDateTime)

endClientAction type: t_voucherClientActions
use: required

Indicates whether the end-client stacked or
returned the voucher.
(commitVoucher.egmAction)

Table 40.61 commitVoucher Attributes (Sheet 2 of 3)

Attribute Restrictions Description

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

 Released: 2016/03/14 Page 2607
© 2016 Gaming Standards Association (GSA)

NEW CLASS

endClientException type: t_voucherClientExcs
use: optional
default: 0

End-client exception code; 0 (zero) indicates
no end-client exceptions.
(commitVoucher.egmException)

Table 40.61 commitVoucher Attributes (Sheet 3 of 3)

Attribute Restrictions Description

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

Page 2608 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

NEW CLASS

40.27 commitVoucherAck Command

40.27.1 Command Description
This command is used by a host to acknowledge receipt of the final results of a voucher redemption request.
The command MUST only be used with point-to-point communications channels and MUST only be sent as a
response. The commitVoucherAck command is generated in response to a commitVoucher command.

The host must make a best effort to acknowledge commitVoucher commands. Class-specific application-level
error codes MUST NOT be used. Failure to acknowledge the commands may cause loss of voucher
functionality.

The propertyId attribute of the class-level element is used to identify the property for which the receipt of the
final results of a voucher redemption request is being acknowledged. The host MUST only include
acknowledgements for end-clients associated with that property in this command.

40.27.1.1 Duplicate Commands

A commitVoucherAck command is considered to be logically equivalent to a previous commitVoucherAck
command if the edge-server detects that the final result of the redemption associated with the transactionId
has already been acknowledged—that is, the state of the transaction is no longer S2S_commitSent. Duplicate
commitVoucherAck commands can be ignored.

40.27.2 Attribute and Element Detail

Table 40.62 commitVoucherAck Attributes

Attribute Restrictions Description

clientType type: t_clientTypes
use: required

Client type; the type of client to which the command
is directed; typically, an edge-server. Wildcards are
not permitted.

clientId type: t_clientId
use: required

Client identifier; the identifier of the client to which
the command is directed; typically, an edge-server.
Wildcards are not permitted.

endClientType type: t_clientTypes
use: required

End-client type; type of end-client that originated
the redemption request. Wildcards are not
permitted.

endClientId type: t_clientId
use: required

End-client identifier; client identifier of the end-
client that originated the redemption request.
Wildcards are not permitted.

transactionId type: t_transactionId
use: required

Transaction identifier.
(commitVoucherAck.transactionId)

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

 Released: 2016/03/14 Page 2609
© 2016 Gaming Standards Association (GSA)

NEW CLASS

40.28 voucherUpdate Command

40.28.1 Command Description
This command is used by a host to broadcast updates to voucher information to clients that have set
subscriptions for that information. The command MUST only be used with point-to-point communications
channels and MUST only be sent as a request or as a notification. When sent as a request, a voucherUpdateAck
command is generated in response to the voucherUpdate command.

The propertyId attribute of the class-level element is used to identify the property for which voucher
information is being reported. The host MUST only include voucher information associated with that
property in this command.

40.28.2 Attribute and Element Detail

Table 40.63 voucherUpdate Attributes

Attribute Restrictions Description

clientType type: t_clientTypes
use: required

Client type; the type of client to which the command
is directed. Wildcards are not permitted.

clientId type: t_clientId
use: required

Client identifier; the identifier of the client to which
the command is directed. Wildcards are not
permitted.

Table 40.64 voucherUpdate Sub-Elements

Element Restrictions Description

voucher minOcc: 0
maxOcc: ∞ Contains voucher information. See Section 40.10,

voucher Data Set.

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

Page 2610 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

NEW CLASS

40.29 voucherUpdateAck Command

40.29.1 Command Description
This command is used by a client to acknowledge the receipt of voucher updates from the host. The command
MUST only be used with point-to-point communications channels and MUST only be sent as a response. The
voucherUpdateAck command is generated in response to the voucherUpdate command.

The propertyId attribute of the class-level element is used to identify the property for which the updates were
acknowledged. The host MUST include the property specified in the original request in its acknowledgement.

40.29.2 Attribute and Element Detail

Table 40.65 voucherUpdateAck Attributes

Attribute Restrictions Description

clientType type: t_clientTypes
use: required

Client type; the type of client from which the
command was sent. Wildcards are not permitted.

clientId type: t_clientId
use: required

Client identifier; the identifier of the client from
which the command was sent. Wildcards are not
permitted.

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

 Released: 2016/03/14 Page 2611
© 2016 Gaming Standards Association (GSA)

NEW CLASS

40.30 queryVouchers Command

40.30.1 Command Description
This command is used by a client to request a list of vouchers from the host. Vouchers can be selected by date/
time, status, player, and/or end-client. The command MUST only be used with point-to-point
communications channels and MUST only be sent as a request. A voucherResults command is generated in
response to the queryVouchers command.

The propertyId attribute of the class-level element is used to identify the property for which vouchers are
being requested. The host MUST only include vouchers associated with that property in its response.

Vouchers can be filtered based on various criteria including date/time, status, end-client, and/or the player. A
voucher MUST qualify under all relevant criteria before it is included in the response.

• The beginDateTime and endDateTime MUST always be specified by the client and MUST always be
used by the host; only vouchers with a transDateTime that is greater than or equal to the
beginDateTime and that is less than or equal to the endDateTime MUST be included in the response.

• If the voucherState is not set to S2S_all, only vouchers with the specified status MUST be included
in the response; otherwise, filtering on voucherState MUST not be performed by the host.

• If the endClientType is not set to S2S_all, only vouchers associated with the specified
endClientType MUST be included in the response; otherwise, filtering on endClientType MUST
NOT be performed by the host.

• If the endClientId is not set to S2S_all, only vouchers associated with the specified endClientId
MUST be included in the response; otherwise, filtering on endClientId MUST NOT be performed
by the host.

• If the idNumber is not empty, only vouchers with the specified idReaderType and idNumber MUST be
included in the response; otherwise, filtering on idReaderType and idNumber MUST NOT be
performed by the host.

• If the playerId is not empty, only vouchers for the specified player MUST be included in the
response; otherwise, filtering on playerId MUST NOT be performed by the host.

In addition to other error codes that the host MAY report, the host MAY report the following error codes to
the client, indicating that the request could not be processed.

• If the voucherState is not set to S2S_all and the host determines that the voucherState is invalid,
the host MUST report the error using error code S2S_PVX004 Invalid Voucher State.

• If the endClientType is not set to S2S_all and the host determines that the endClientType is invalid,
the host MUST report the error using error code S2S_PVX002 Invalid End-Client Type.

• If the endClientId is not set to s2s_all and the host determines that the end-client is not registered
for the property, the host MUST report the error using error code S2S_PVX003 Invalid End-Client
for Property.

• If the host determines that the idReaderType is invalid, the host MUST report the error using error
code S2S_GBX034 Invalid ID Reader Type.

If the specified selection criteria result in an empty list of vouchers, the host MUST simply return an empty list
to the client.

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

Page 2612 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

NEW CLASS

40.30.1.1 Managing Results Lists

The maxQueryResults attribute indicates the maximum number of vouchers that the host may include in the
result list returned to the client. The host MUST NOT report more vouchers in the result list than the number
specified in the maxQueryResults attribute. If the maxQueryResults attribute is set to 0 (zero), the host MAY
return any number of vouchers in the result list.

The combination of the lastEndClientType, lastEndClientId, and lastTransactionId attributes MAY be
used to identify the last voucher received in a previous query. This option MAY be used to request additional
vouchers when the previous query did not include the complete result list—that is, the remainingResults
attribute reported with the previous query was greater than 0 (zero). In such cases, the lastEndClientType,
lastEndClientId, and lastTransactionId attributes reported in the previous query SHOULD be included
as the lastEndClientType, lastEndClientId, and lastTransactionId attributes of the subsequent query.

When a lastEndClientType other than S2S_all is specified, all vouchers with an endClientType less than the
lastEndClientType MUST be excluded from the result list; all vouchers with an endClientType equal to the
lastEndClientType and an endClientId less than the lastEndClientId MUST be excluded from the result
list; and, all vouchers with an endClientType equal to the lastEndClientType and an endClientId equal to
the lastEndClientId and a transactionId less than or equal to the lastTransactionId MUST be excluded
from the result list. When the lastEndClientType is set to S2S_all, all vouchers are eligible to be included in
the result list.

The host MUST organize the vouchers contained in the result list in ascending order by endClientType,
endClientId, and then transactionId. The lastEndClientType, lastEndClientId, and
lastTransactionId attributes MUST be set to the endClientType, endClientId, and transactionId of the
last voucher contained in the result list. The currentResults attribute MUST be set to the total number of
vouchers in the result list.

When the number of vouchers selected by a query exceeds the number of vouchers included in the result list,
the host MUST organize the vouchers into ascending order before constructing the result list, returning the
vouchers with the lowest endClientTypes, endClientIds, and then transactionIds in the result list. In such
cases, the remainingResults attribute MUST be set to a value greater than 0 (zero). The value MAY reflect
the actual number of vouchers that satisfied the query but were not included in the result list or the value MAY
simply indicate that not all vouchers were included in the result list. If all vouchers that satisfied the query were
included in the result list, the remainingResults attribute MUST be set to 0 (zero).

When the number of vouchers selected by a query exceeds the number of vouchers included in the result list,
the host MAY use the lastQueryId attribute to identify a static query that was used to satisfy the request. In
such cases, when additional results from the same query are needed, the lastQueryId received in the response
to a previous request SHOULD be used as the lastQueryId in subsequent requests. This indicates that the
host SHOULD continue to report results from the same query. However, the host MAY generate a new query
when necessary – for example, if a query times out. If the lastQueryId attribute is set to <empty> or the
value of the lastQueryId attribute is invalid, the host MUST generate a new query.

Before all of the results of a static query have been requested by the client, the client MAY terminate the static
query early by setting the maxQueryResults attribute to -1 (negative one) in its request. This indicates that the
client does not require any additional results from the static query and that the host can release any resources
associated with the static query. When responding to such a request, the host MUST set the currentResults
and remainingResults attributes to 0 (zero) and set the lastQueryId to <empty>.

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

 Released: 2016/03/14 Page 2613
© 2016 Gaming Standards Association (GSA)

NEW CLASS

40.30.2 Attribute and Element Detail

Table 40.66 queryVouchers Attributes (Sheet 1 of 2)

Attribute Restrictions Description

clientType type: t_clientTypes
use: required

Client type; the type of client from which the
command was sent. Wildcards are not permitted.

clientId type: t_clientId
use: required

Client identifier; the identifier of the client from
which the command was sent. Wildcards are not
permitted.

beginDateTime type: t_dateTime
use: required

Beginning date/time for the query.

endDateTime type: t_dateTime
use: required

Ending date/time for the query.

voucherStatus type: t_voucherStates
use: optional
default: S2S_all

Voucher status; S2S_all wildcard permitted.

endClientType type: t_clientTypes
use: optional
default: S2S_all

End-client type; the type of end-client for which
vouchers should be reported; S2S_all wildcard
permitted.

endClientId type: t_clientId
use: optional
default: S2S_all

End-client identifier; the identifier of the end-client
for which vouchers should be reported; S2S_all
wildcard permitted.

idReaderType type: t_idReaderTypes
use: optional
default: S2S_none

Type of ID reader device.

idNumber type: t_idNumber
use: optional
default: <empty>

ID number.

playerId type: t_playerId
use: optional
default: <empty>

Player identifier.

maxQueryResults type: t_quantity
use: optional
default: 0

The maximum number of vouchers that the host
should include in the result list; fewer results may be
included.

lastEndClientType type: t_clientTypes
use: optional
default: S2S_all

The last endClientType received by the client in a
previous query.

lastEndClientId type: t_clientId
use: optional
default: S2S_all

The last endClientId received by the client in a
previous query.

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

Page 2614 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

NEW CLASS

lastTransactionId type: t_transactionId
use: optional
default: 0

The last transactionId received by the client in a
previous query.

lastQueryId type: t_s2sId32
use: optional
default: <empty>

The identifier of the last static query performed by
the host; can be set by the client to continue
gathering results from the static query; if set to
<empty>, the host MUST perform a new query.

Table 40.66 queryVouchers Attributes (Sheet 2 of 2)

Attribute Restrictions Description

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

 Released: 2016/03/14 Page 2615
© 2016 Gaming Standards Association (GSA)

NEW CLASS

40.31 voucherResults Command

40.31.1 Command Description
This command is used by the host to report a list of vouchers to a client. The command MUST only be used
with point-to-point communications channels and MUST only be sent as a response. The voucherResults
command is generated in response to a queryVouchers command.

The propertyId attribute of the class-level element is used to identify the property for which vouchers are
being reported. The host MUST only include vouchers associated with that property in this command.

See Section 40.30, queryVouchers Command, for more details regarding the currentResults,
remainingResults, lastEndClientType, lastEndClientId, lastTransactionId, and lastQueryId
attributes.

40.31.2 Attribute and Element Detail

Table 40.67 voucherResults Attributes (Sheet 1 of 2)

Attribute Restrictions Description

clientType type: t_clientTypes
use: required

Client type; the type of client to which the command
is directed. Wildcards are not permitted.

clientId type: t_clientId
use: required

Client identifier; the identifier of the client to which
the command is directed. Wildcards are not
permitted.

currentResults type: t_quantity
use: optional
default: 0

The number of vouchers included in the response.

remainingResults type: t_quantity
use: optional
default: 0

The number of vouchers remaining in the query that
were not included in the response; any value greater
than 0 (zero) indicates that all transactions were not
included; the value may represent the actual number
of remaining records or the value may simply
indicate that additional records are available; when
set to 0 (zero), no additional records are available.

lastEndClientType type: t_clientTypes
use: optional
default: S2S_all

The endClientType of the last record contained in
the response; if no records, set to S2S_all.

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

Page 2616 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

NEW CLASS

lastEndClientId type: t_clientId
use: optional
default: S2S_all

The endClientId of the last record contained in the
response; if no records, set to S2S_all.

lastTransactionId type: t_transactionId
use: optional
default: 0

The transactionId of the last record contained in
the query; if no records, set to 0 (zero).

lastQueryId type: t_s2sId32
use: optional
default: <empty>

The identifier of the query performed by the host;
can used to report the results of a static query over a
series of responses; if set to <empty>, a static query
was not used—the host will perform a new query
for each new request.

Table 40.68 voucherResults Sub-Elements

Element Restrictions Description

voucher minOcc: 0
maxOcc: ∞ Contains voucher information. See Section 40.10,

voucher Data Set.

Table 40.67 voucherResults Attributes (Sheet 2 of 2)

Attribute Restrictions Description

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

 Released: 2016/03/14 Page 2617
© 2016 Gaming Standards Association (GSA)

NEW CLASS

40.32 postVouchers Command

40.32.1 Command Description
This command is used by a client to request that the host post a list of vouchers to a specified location. The
command MUST only be used with point-to-point communications channels and MUST only be sent as a
request. A postVouchersAck command is generated in response to the postVouchers command.

The propertyId attribute of the class-level element is used to identify the property for which vouchers are
being requested. The host MUST only include vouchers associated with that property in its response.

The beginDateTime, endDateTime, voucherState, endClientType, endClientId, idReaderType, idNumber,
and playerId attributes of the postVouchers command MUST operate the same as similar attributes within
the queryVouchers command. Likewise, error conditions related to those attributes MUST operate the same
as similar error conditions specified for the queryVouchers command. See Section 40.30, queryVouchers
Command, for more details.

The transferType, transferLocation, and transferParams attributes MUST operate the same as similar
attributes within the uploadPackage command within the download class. See Chapter 36, download Class, for
more details.

In addition to other error codes that the host MAY report, the host MAY report the following error codes to
the client, indicating that the request could not be processed.

• If the transfer location is invalid, the host MUST report the error using error code S2S_PVX020
Invalid Transfer Location.

• If the transfer parameters are invalid, the host MUST report the error using error code S2S_PVX021
Invalid Transfer Parameters.

• If the transfer fails for any other reason, the host MUST report the error using error code S2S_PVX022
File Transfer Failed.

The list of vouchers that is posted to the specified location MUST be constructed as an XML file. The root
element of the XML file MUST be a postVouchers element. The attributes of the postVouchers element
MUST be set to the values as contained in the postVouchers request. Each voucher MUST be contained in a
voucher sub-element of the postVouchers element. The syntax of the postVouchers and voucher elements
MUST conform to the syntax defined for those elements within the S2S protocol; the only exception is that
voucher elements are permitted as sub-elements of postVouchers elements.

If the specified selection criteria result in an empty list of vouchers, the host MUST simply post a
postVouchers element containing an empty list of vouchers to the specified location.

40.32.2 Attribute and Element Detail

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

Page 2618 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

NEW CLASS

Table 40.69 postVouchers Attributes

Attribute Restrictions Description

clientType type: t_clientTypes
use: required

Client type; the type of client from which the
command was sent. Wildcards are not
permitted.

clientId type: t_clientId
use: required

Client identifier; the identifier of the client from
which the command was sent. Wildcards are
not permitted.

beginDateTime type: t_dateTime
use: required

Beginning date/time for the query.

endDateTime type: t_dateTime
use: required

Ending date/time for the query.

voucherStatus type: t_voucherStates
use: optional
default: S2S_all

Voucher status; S2S_all wildcard permitted.

endClientType type: t_clientTypes
use: optional
default: S2S_all

End-client type; the type of end-client for
which vouchers should be reported; S2S_all
wildcard permitted.

endClientId type: t_clientId
use: optional
default: S2S_all

End-client identifier; the identifier of the end-
client for which vouchers should be reported;
S2S_all wildcard permitted.

idReaderType type: t_idReaderTypes
use: optional
default: S2S_none

Type of ID reader device.

idNumber type: t_idNumber
use: optional
default: <empty>

ID number.

playerId type: t_playerId
use: optional
default: <empty>

Player identifier.

transferType type: t_transferTypes
use: required

Transfer type; S2S_uploadPut.

transferLocation type: t_transportLocation
use: required

URI to which the results should be transferred.
See Section 36.1.10, Supported Transfer
Protocols, for more details.

transferParams type: xs:string
use: optional
maxLen: 128
default: <empty>

Optional parameters required for the transfer.

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

 Released: 2016/03/14 Page 2619
© 2016 Gaming Standards Association (GSA)

NEW CLASS

40.33 postVouchersAck Command

40.33.1 Command Description
This command is used by the host to report that a list of vouchers has been successfully posted. The command
MUST only be used with point-to-point communications channels and MUST only be sent as a response. The
postVouchersAck command is generated in response to a postVouchers command.

The propertyId attribute of the class-level element is used to identify the property for which vouchers are
being reported. The host MUST only include vouchers associated with that property in this command.

40.33.2 Attribute and Element Detail

Table 40.70 postVouchersAck Attributes

Attribute Restrictions Description

clientType type: t_clientTypes
use: required

Client type; the type of client to which the command
is directed. Wildcards are not permitted.

clientId type: t_clientId
use: required

Client identifier; the identifier of the client to which
the command is directed. Wildcards are not
permitted.

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

Page 2620 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

NEW CLASS

40.34 Data Types
The following tables describe the data types specific to the playerVoucher class. See Appendix A for other
data types used within the playerVoucher class as well as other classes.

Table 40.71 playerVoucher Data Types

Data Type Restrictions Description

t_validationId type: xs:string
minLen: 18
maxLen: 18

Validation identifier.

t_validationListId type: xs:long
minIncl: 0

Host-assigned validation list identifier.

t_validationSeed type: xs:string
maxLen: 20
pattern: [-~]{0,20}

Validation seed.

t_voucherActions type: xs:string
enumerations:
 S2S_issue
 S2S_redeem

Type of voucher action.

t_voucherBoolean type: xs:string
enumerations:
 S2S_true
 S2S_false
 S2S_unknown

Voucher tri-state boolean value.

t_voucherClientActions type: t_extensibleList
enumerations:

See Section 40.34.1.

Voucher client actions.

t_voucherClientExcs type: t_exceptionCode
See Section 40.34.2.

Voucher end-client exception code.

t_voucherHostActions type: t_extensibleList
enumerations:

See Section 40.34.3.

Voucher host actions.

t_voucherHostExcs type: t_exceptionCode
See Section 40.34.4.

Voucher host exception code.

t_voucherSources type: xs:string
enumertaions:
 S2S_endClient
 S2S_system

Issuance source for the voucher.

t_voucherStates type: t_extensibleList
enumerations:

See Section 40.34.5.

Voucher transaction states.

t_voucherTitle16 type: xs:string
maxLen: 16

16-charcater string.

t_voucherTitle40 type: xs:string
maxLen: 40

40-character string.

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

 Released: 2016/03/14 Page 2621
© 2016 Gaming Standards Association (GSA)

NEW CLASS

40.34.1 Enumeration Values for t_voucherClientActions

40.34.2 Exception Codes for t_voucherClientExcs

40.34.3 Enumeration Values for t_voucherHostActions

Table 40.72 Enumeration Values for t_voucherClientActions

Enumeration Description

S2S_issued Voucher issued.

S2S_pending Voucher redemption requested.

S2S_redeemed Voucher stacked.

S2S_returned Voucher returned (not stacked).

Table 40.73 Exception Codes for t_voucherClientExcs

Exception Description

0 Transaction successful.

1 Printer presentation error – partial voucher issued.

2 Redemption error from host – voucher returned.

3 Redemption exception from host – voucher returned.

4 Redemption exception from host – voucher stacked.

5 Redemption timed out – voucher returned.

6 Voucher exceeds credit limit – voucher returned.

7 Game state changed – voucher returned.

8 Another transaction in process – voucher returned.

9 Cannot mix non-cashable expirations – voucher returned.

10 Cannot mix non-cashable credits – voucher returned.

99 Voucher returned – reason unknown.

Table 40.74 Enumeration Values for t_voucherHostActions

Enumeration Description

S2S_endClientAction Stack or return to be determined by end-client.

S2S_stack Force voucher to be stacked.

S2S_return Force voucher to be returned (not stacked).

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

Page 2622 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

NEW CLASS

40.34.4 Exception Codes for t_voucherHostExceptions

40.34.5 Enumeration Values for t_voucherStates

Table 40.75 Exception Codes for t_voucherHostExceptions

Exception Description

0 Redemption authorized.

1 Redemption in process at another end-client.

2 Voucher already redeemed.

3 Voucher expired.

4 Voucher not found.

5 Voucher cannot be redeemed at this end-client.

6 Incorrect player for voucher.

99 Redemption denied – reason unknown.

Table 40.76 Enumeration Values for t_voucherStates

Enumeration Description

S2S_issueSent Voucher issued, waiting for acknowledgement.

S2S_issueAcked Voucher issued and acknowledged.

S2S_redeemSent Redemption requested, waiting for authorization.

S2S_redeemAuth Redemption authorized, transfer in process.

S2S_commitSent Transaction completed/aborted, waiting for acknowledgement.

S2S_commitAcked Transaction completed/aborted and acknowledged.

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

 Released: 2016/03/14 Page 2623
© 2016 Gaming Standards Association (GSA)

NEW CLASS

40.35 Error Codes
The following table includes the error codes contained within the playerVoucher class. The descriptions of
individual commands and data sets indicate when a specific error code is used. See Appendix A for other error
codes used within the playerVoucher class as well as other classes.

Table 40.77 playerVoucher Error Codes

Error Code Suggested Error Text

S2S_PVX001 Manual Authentication Identifiers Not Supported by End-Client

S2S_PVX002 Invalid End-Client Type

S2S_PVX003 Invalid End-Client for Property

S2S_PVX004 Invalid Voucher State

S2S_PVX005 Invalid Voucher Action

S2S_PVX006 Invalid Voucher Source

S2S_PVX007 Invalid Host Action

S2S_PVX008 Invalid End-Client Action

S2S_PVX020 Invalid Transfer Location

S2S_PVX021 Invalid Transfer Parameters

S2S_PVX022 File Transfer Failed

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

Page 2624 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

NEW CLASS

40.36 Event Codes
The following table includes the event codes contained within the playerVoucher class. The descriptions of
individual commands and data sets indicate when a specific event code is used.

Table 40.78 playerVoucher Event Codes

Event Code Suggested Event Text

S2S_PVE001 Invalid End-Client For Property

S2S_PVE002 Voucher Status Unavailable For End-Client

S2S_PVE003 Unable To Set Voucher State For End-Client

S2S_PVE004 Voucher Configuration Not Available For End-Client

S2S_PVE005 Unable To Set Voucher Configuration For End-Client

S2S_PVE010 Validation Data Error

S2S_PVE011 Validation Data Updated

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

 Released: 2016/03/14 Page 2625
© 2016 Gaming Standards Association (GSA)

NEW CLASS

40.37 Examples
The following examples demonstrate how commands within the playerVoucher class are constructed.

40.37.1 setVoucherConfig-voucherConfigAck

The following example illustrates the construction of a setVoucherConfig request from the host and a
voucherConfigAck response from an edge-server.

<s2s:s2sMessage
xmlns:s2s = "http://www.gamingstandards.com/s2s/schemas/v1.2.6/"
xmlns:pvc = "http://www.gamingstandards.com/s2s/schemas/v1.2.6/pvc"
>
<s2s:s2sHeader

s2s:toSystem = "https://voucherEdgeServer"
s2s:fromSystem = "https://voucherHost"
s2s:messageId = "11235813"
s2s:dateTimeSent = "2013-12-31T14:11:25.000-05:00"
/>

<s2s:s2sBody>
<pvc:playerVoucher

s2s:propertyId = "099"
s2s:dateTime = "2013-12-31T14:11:25.000-05:00"
s2s:commandId = "11235813"
s2s:sessionType = "request"
s2s:sessionId = "1"
>
<pvc:setVoucherConfig

pvc:clientType = "S2S_system"
pvc:clientId = "ABC_voucherEdgeServer"
>
<pvc:endClientList>

<pvc:endClient
pvc:endClientType = "S2S_egm"
pvc:endClientId = "ABC_123"
/>

<pvc:endClient
pvc:endClientType = "S2S_egm"
pvc:endClientId = "ABC_456"
/>

</pvc:endClientList>
<pvc:voucherConfig

pvc:configurationId = "12345"
pvc:restartStatus = "true"
pvc:requiredForPlay = "true"
pvc:timeToLive = "30000"

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

Page 2626 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

NEW CLASS

pvc:combineCashableOut = "true"
pvc:allowNonCashOut = "true"
pvc:maxValIds = "10"
pvc:minLevelIds = "5"
pvc:valIdListRefresh = "43200000"
pvc:valIdListLife = "86400000"
pvc:voucherHoldTime = "10000"
pvc:printOffLine = "true"
pvc:expireCashPromo = "30"
pvc:printExpCashPromo = "true"
pvc:expireNonCash = "1"
pvc:printExpNonCash = "true"
pvc:propName = "ABC Casino"
pvc:propLine1 = "1 Casino Way"
pvc:propLine2 = "Las Vegas"
pvc:titleCash = "Cash Out"
pvc:titlePromo = "Promo Voucher"
pvc:titleNonCash = "Restricted"
pvc:titleLargeWin = "Large Win"
pvc:titleBonusCash = "Cash Bonus"
pvc:titleBonusPromo = "Promo Bonus"
pvc:titleBonusNonCash = "Restricted"
pvc:titleWatCash = "Cash Transfer"
pvc:titleWatPromo = "Promo Transfer"
pvc:titleWatNonCash = "Restricted"
pvc:allowVoucherIssue = "true"
pvc:allowVoucherRedeem = "true"
pvc:maxOnLinePayOut = "1000000000"
pvc:maxOffLinePayOut = "1000000000"
pvc:printNonCashOffLine = "false"
/>

</pvc:setVoucherConfig>
</pvc:playerVoucher>

</s2s:s2sBody>
</s2s:s2sMessage>

<s2s:s2sMessage
xmlns:s2s = "http://www.gamingstandards.com/s2s/schemas/v1.2.6/"
xmlns:pvc = "http://www.gamingstandards.com/s2s/schemas/v1.2.6/pvc"
>
<s2s:s2sHeader

s2s:toSystem = "https://voucherHost"
s2s:fromSystem = "https://voucherEdgeServer"
s2s:messageId = "23581321"
s2s:dateTimeSent = "2013-12-31T14:11:26.000-05:00"

/>
<s2s:s2sBody>

<pvc:playerVoucher
s2s:propertyId = "099"
s2s:dateTime = "2013-12-31T14:11:26.000-05:00"
s2s:commandId = "23581321"
s2s:sessionType = "response"
s2s:sessionId = "1"
>
<pvc:voucherConfigAck

pvc:clientType = "S2S_system"
pvc:clientId = "ABC_voucherEdgeServer"
/>

</pvc:playerVoucher>
</s2s:s2sBody>

</s2s:s2sMessage>

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

 Released: 2016/03/14 Page 2627
© 2016 Gaming Standards Association (GSA)

NEW CLASS

40.37.2 setVoucherState-voucherConfigAck

The following example illustrates the construction of a setVoucherState request from the host and a
voucherConfigAck response from an edge-server.

<s2s:s2sMessage
xmlns:s2s = "http://www.gamingstandards.com/s2s/schemas/v1.2.6/"
xmlns:pvc = "http://www.gamingstandards.com/s2s/schemas/v1.2.6/pvc"
>
<s2s:s2sHeader

s2s:toSystem = "https://voucherEdgeServer"
s2s:fromSystem = "https://voucherHost"
s2s:messageId = "11235814"
s2s:dateTimeSent = "2013-12-31T14:41:55.000-05:00"
/>

<s2s:s2sBody>
<pvc:playerVoucher

s2s:propertyId = "099"
s2s:dateTime = "2013-12-31T14:41:55.000-05:00"
s2s:commandId = "11235814"
s2s:sessionType = "request"
s2s:sessionId = "2"
>
<pvc:setVoucherState

pvc:clientType = "S2S_system"
pvc:clientId = "ABC_voucherEdgeServer"
>
<pvc:endClientList>

<pvc:endClient
pvc:endClientType = "S2S_egm"
pvc:endClientId = "ABC_123"
/>

<pvc:endClient
pvc:endClientType = "S2S_egm"
pvc:endClientId = "ABC_456"
/>

</pvc:endClientList>
<pvc:voucherState

pvc:enable = "true"
pvc:disableText = ""
pvc:lockOut = "false"
pvc:lockText = ""
pvc:lockTimeOut = "0"
pvc:configurationId = "12345"
/>

</pvc:setVoucherState>
</pvc:playerVoucher>

</s2s:s2sBody>

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

Page 2628 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

NEW CLASS

</s2s:s2sMessage>

<s2s:s2sMessage
xmlns:s2s = "http://www.gamingstandards.com/s2s/schemas/v1.2.6/"
xmlns:pvc = "http://www.gamingstandards.com/s2s/schemas/v1.2.6/pvc"
>
<s2s:s2sHeader

s2s:toSystem = "https://voucherHost"
s2s:fromSystem = "https://voucherEdgeServer"
s2s:messageId = "23581322"
s2s:dateTimeSent = "2013-12-31T14:41:56.000-05:00"
/>

<s2s:s2sBody>
<pvc:playerVoucher

s2s:propertyId = "099"
s2s:dateTime = "2013-12-31T14:41:56.000-05:00"
s2s:commandId = "23581322"
s2s:sessionType = "response"
s2s:sessionId = "2"
>
<pvc:voucherConfigAck

pvc:clientType = "S2S_system"
pvc:clientId = "ABC_voucherEdgeServer"
/>

</pvc:playerVoucher>
</s2s:s2sBody>

</s2s:s2sMessage>

40.37.3 getValidationIds-validationIdList

The following example illustrates the construction of a getValidationIds request from an edge-server and a
validationIdList response from the host.

<s2s:s2sMessage
xmlns:s2s = "http://www.gamingstandards.com/s2s/schemas/v1.2.6/"
xmlns:pvc = "http://www.gamingstandards.com/s2s/schemas/v1.2.6/pvc"
>
<s2s:s2sHeader

s2s:toSystem = "https://voucherHost"
s2s:fromSystem = "https://voucherEdgeServer"
s2s:messageId = "23581323"
s2s:dateTimeSent = "2013-12-31T14:46:00.000-05:00"
/>

<s2s:s2sBody>
<pvc:playerVoucher

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

 Released: 2016/03/14 Page 2629
© 2016 Gaming Standards Association (GSA)

NEW CLASS

s2s:propertyId = "099"
s2s:dateTime = "2013-12-31T14:46:00.000-05:00"
s2s:commandId = "23581323"
s2s:sessionType = "request"
s2s:sessionId = "3"
>
<pvc:getValidationIds

pvc:clientType = "S2S_system"
pvc:clientId = "ABC_voucherEdgeServer"
pvc:endClientType = "S2S_egm"
pvc:endClientId = "ABC_123"
pvc:validationListId = "0"
pvc:numValidationIds = "10"
pvc:valIdListExpired = "true"
pvc:configurationId = "12345"
/>

</pvc:playerVoucher>
</s2s:s2sBody>

</s2s:s2sMessage>

<s2s:s2sMessage
xmlns:s2s = "http://www.gamingstandards.com/s2s/schemas/v1.2.6/"
xmlns:pvc = "http://www.gamingstandards.com/s2s/schemas/v1.2.6/pvc"
>
<s2s:s2sHeader
s2s:toSystem = "https://voucherEdgeServer"
s2s:fromSystem = "https://voucherHost"
s2s:messageId = "11235815"
s2s:dateTimeSent = "2013-12-31T14:46:01.000-05:00"
/>
<s2s:s2sBody>

<pvc:playerVoucher
s2s:propertyId = "099"
s2s:dateTime = "2013-12-31T14:46:01.000-05:00"
s2s:commandId = "11235815"
s2s:sessionType = "response"
s2s:sessionId = "3"
>

<pvc:validationIdList
pvc:clientType = "S2S_system"
pvc:clientId = "ABC_voucherEdgeServer"
pvc:endClientType = "S2S_egm"
pvc:endClientId = "ABC_123"
pvc:validationListId = "8642"
pvc:deleteCurrent = "true"
>
<pvc:validationId

pvc:validationId = "09912345678912345"
pvc:validationSeed = "1A2B3C4D5C6D7E8F9"
/>

<pvc:validationId
pvc:validationId = "09912345678912346"
pvc:validationSeed = "1A2B3C4D5C6D7E8F9"
/>

<pvc:validationId
pvc:validationId = "09912345678912347"
pvc:validationSeed = "1A2B3C4D5C6D7E8F9"
/>

<pvc:validationId
pvc:validationId = "09912345678912348"
pvc:validationSeed = "1A2B3C4D5C6D7E8F9"
/>

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

Page 2630 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

NEW CLASS

<pvc:validationId
pvc:validationId = "09912345678912349"
pvc:validationSeed = "1A2B3C4D5C6D7E8F9"
/>

<pvc:validationId
pvc:validationId = "09912345678912350"
pvc:validationSeed = "1A2B3C4D5C6D7E8F9"
/>

<pvc:validationId
pvc:validationId = "09912345678912351"
pvc:validationSeed = "1A2B3C4D5C6D7E8F9"
/>

<pvc:validationId
pvc:validationId = "09912345678912352"
pvc:validationSeed = "1A2B3C4D5C6D7E8F9"
/>

<pvc:validationId
pvc:validationId = "09912345678912353"
pvc:validationSeed = "1A2B3C4D5C6D7E8F9"
/>

<pvc:validationId
pvc:validationId = "09912345678912354"
pvc:validationSeed = "1A2B3C4D5C6D7E8F9"
/>

<pvc:validationId
pvc:validationId = "09912345678912355"
pvc:validationSeed = "1A2B3C4D5C6D7E8F9"
/>

</pvc:validationIdList>
</pvc:playerVoucher>

</s2s:s2sBody>
</s2s:s2sMessage>

40.37.4 issueVoucher-issueVoucherAck

The following example illustrates the construction of an issueVoucher request from an edge-server and an
issueVoucherAck response from the host.

<s2s:s2sMessage
xmlns:s2s = "http://www.gamingstandards.com/s2s/schemas/v1.2.6/"
xmlns:pvc = "http://www.gamingstandards.com/s2s/schemas/v1.2.6/pvc"
>
<s2s:s2sHeader

s2s:toSystem = "https://voucherHost"
s2s:fromSystem = "https://voucherEdgeServer"
s2s:messageId = "23581324"

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

 Released: 2016/03/14 Page 2631
© 2016 Gaming Standards Association (GSA)

NEW CLASS

s2s:dateTimeSent = "2013-12-31T15:01:16.000-05:00"
/>

<s2s:s2sBody>
<pvc:playerVoucher

s2s:propertyId = "099"
s2s:dateTime = "2013-12-31T15:01:16.000-05:00"
s2s:commandId = "23581324"
s2s:sessionType = "request"
s2s:sessionId = "4"
>
<pvc:issueVoucher

pvc:clientType = "S2S_system"
pvc:clientId = "ABC_voucherEdgeServer"
pvc:endClientType = "S2S_egm"
pvc:endClientId = "ABC_123"
pvc:transactionId = "97531"
pvc:idReaderType = "S2S_magCard"
pvc:idNumber = "09900101977"
pvc:playerId = "00101977"
pvc:validationId = "09912345678912345"
pvc:voucherAmt = "12500000"
pvc:creditType = "S2S_cashable"
pvc:voucherSource = "S2S_endClient"
pvc:largeWin = "false"
pvc:voucherSequence = "123"
pvc:expireCredits = "false"
pvc:expireDateTime = "2000-01-01T00:00:00.000-00:00"
pvc:transferAmt = "12500000"
pvc:transferDateTime = "2013-12-31T15:01:16.000-05:00"
pvc:expireDays = "30"
pvc:endClientAction = "S2S_issued"
pvc:endClientException = "0"
/>

</pvc:playerVoucher>
</s2s:s2sBody>

</s2s:s2sMessage>

<s2s:s2sMessage
xmlns:s2s = "http://www.gamingstandards.com/s2s/schemas/v1.2.6/"
xmlns:pvc = "http://www.gamingstandards.com/s2s/schemas/v1.2.6/pvc"
>
<s2s:s2sHeader

s2s:toSystem = "https://voucherEdgeServer"
s2s:fromSystem = "https://voucherHost"
s2s:messageId = "11235816"
s2s:dateTimeSent = "2013-12-31T15:01:17.000-05:00"
/>

<s2s:s2sBody>
<pvc:playerVoucher

s2s:propertyId = "099"
s2s:dateTime = "2013-12-31T15:01:17.000-05:00"
s2s:commandId = "11235816"
s2s:sessionType = "response"
s2s:sessionId = "4"
>
<pvc:issueVoucherAck

pvc:clientType = "S2S_system"
pvc:clientId = "ABC_voucherEdgeServer"
pvc:endClientType = "S2S_egm"
pvc:endClientId = "ABC_123"
pvc:transactionId = "97531"
/>

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

Page 2632 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

NEW CLASS

</pvc:playerVoucher>
</s2s:s2sBody>

</s2s:s2sMessage>

40.37.5 redeemVoucher-authorizeVoucher

The following example illustrates the construction of a redeemVoucher request from an edge-server and an
authorizeVoucher response from the host.

<s2s:s2sMessage
xmlns:s2s = "http://www.gamingstandards.com/s2s/schemas/v1.2.6/"
xmlns:pvc = "http://www.gamingstandards.com/s2s/schemas/v1.2.6/pvc"
>
<s2s:s2sHeader

s2s:toSystem = "https://voucherHost"
s2s:fromSystem = "https://voucherEdgeServer"
s2s:messageId = "23581325"
s2s:dateTimeSent = "2013-12-31T15:10:25.000-05:00"
/>

<s2s:s2sBody>
<pvc:playerVoucher

s2s:propertyId = "099"
s2s:dateTime = "2013-12-31T15:10:25.000-05:00"
s2s:commandId = "23581325"
s2s:sessionType = "request"
s2s:sessionId = "5"
>
<pvc:redeemVoucher

pvc:clientType = "S2S_system"
pvc:clientId = "ABC_voucherEdgeServer"
pvc:endClientType = "S2S_egm"
pvc:endClientId = "ABC_123"
pvc:transactionId = "97532"
pvc:idReaderType = "S2S_magCard"
pvc:idNumber = "09900101977"
pvc:playerId = "00101977"
pvc:validationId = "09912345678912345"
/>

</pvc:playerVoucher>
</s2s:s2sBody>

</s2s:s2sMessage>

<s2s:s2sMessage
xmlns:s2s = "http://www.gamingstandards.com/s2s/schemas/v1.2.6/"
xmlns:pvc = "http://www.gamingstandards.com/s2s/schemas/v1.2.6/pvc"
>

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

 Released: 2016/03/14 Page 2633
© 2016 Gaming Standards Association (GSA)

NEW CLASS

<s2s:s2sHeader
s2s:toSystem = "https://voucherEdgeServer"
s2s:fromSystem = "https://voucherHost"
s2s:messageId = "11235817"
s2s:dateTimeSent = "2013-12-31T15:10:26.000-05:00"
/>

<s2s:s2sBody>
<pvc:playerVoucher

s2s:propertyId = "099"
s2s:dateTime = "2013-12-31T15:10:26.000-05:00"
s2s:commandId = "11235817"
s2s:sessionType = "response"
s2s:sessionId = "5"
>
<pvc:authorizeVoucher

pvc:clientType = "S2S_system"
pvc:clientId = "ABC_voucherEdgeServer"
pvc:endClientType = "S2S_egm"
pvc:endClientId = "ABC_123"
pvc:transactionId = "97532"
pvc:validationId = "09912345678912345"
pvc:voucherAmt = "12500000"
pvc:creditType = "S2S_cashable"
pvc:voucherSource = "S2S_endClient"
pvc:largeWin = "false"
pvc:voucherSequence = "123"
pvc:expireCredits = "false"
pvc:expireDateTime = "2000-01-01T00:00:00.000-00:00"
pvc:hostAction = "S2S_endClientAction"
pvc:hostException = "0"
/>

</pvc:playerVoucher>
</s2s:s2sBody>

</s2s:s2sMessage>

40.37.6 commitVoucher-commitVoucherAck

The following example illustrates the construction of a commitVoucher request from an edge-server and a
commitVoucherAck response from the host.

<s2s:s2sMessage
xmlns:s2s = "http://www.gamingstandards.com/s2s/schemas/v1.2.6/"
xmlns:pvc = "http://www.gamingstandards.com/s2s/schemas/v1.2.6/pvc"
>
<s2s:s2sHeader

s2s:toSystem = "https://voucherHost"

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

Page 2634 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

NEW CLASS

s2s:fromSystem = "https://voucherEdgeServer"
s2s:messageId = "23581326"
s2s:dateTimeSent = "2013-12-31T15:15:30.000-05:00"
/>

<s2s:s2sBody>
<pvc:playerVoucher

s2s:propertyId = "099"
s2s:dateTime = "2013-12-31T15:15:30.000-05:00"
s2s:commandId = "23581326"
s2s:sessionType = "request"
s2s:sessionId = "6"
>
<pvc:commitVoucher

pvc:clientType = "S2S_system"
pvc:clientId = "ABC_voucherEdgeServer"
pvc:endClientType = "S2S_egm"
pvc:endClientId = "ABC_123"
pvc:transactionId = "97532"
pvc:validationId = "09912345678912345"
pvc:voucherAmt = "12500000"
pvc:creditType = "S2S_cashable"
pvc:voucherSource = "S2S_endClient"
pvc:largeWin = "false"
pvc:voucherSequence = "123"
pvc:expireCredits = "false"
pvc:expireDateTime = "2000-01-01T00:00:00.000-00:00"
pvc:transferAmt = "12500000"
pvc:transferDateTime = "2013-12-31T15:15:30.000-05:00"
pvc:endClientAction = "S2S_redeemed"
pvc:endClientException = "0"
/>

</pvc:playerVoucher>
</s2s:s2sBody>

</s2s:s2sMessage>

<s2s:s2sMessage
xmlns:s2s = "http://www.gamingstandards.com/s2s/schemas/v1.2.6/"
xmlns:pvc = "http://www.gamingstandards.com/s2s/schemas/v1.2.6/pvc"
>
<s2s:s2sHeader

s2s:toSystem = "https://voucherEdgeServer"
s2s:fromSystem = "https://voucherHost"
s2s:messageId = "11235818"
s2s:dateTimeSent = "2013-12-31T15:15:31.000-05:00"
/>

<s2s:s2sBody>
<pvc:playerVoucher

s2s:propertyId = "099"
s2s:dateTime = "2013-12-31T15:15:31.000-05:00"
s2s:commandId = "11235818"
s2s:sessionType = "response"
s2s:sessionId = "6"
>
<pvc:commitVoucherAck

pvc:clientType = "S2S_system"
pvc:clientId = "ABC_voucherEdgeServer"
pvc:endClientType = "S2S_egm"
pvc:endClientId = "ABC_123"
pvc:transactionId = "97532"
/>

</pvc:playerVoucher>
</s2s:s2sBody>

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

 Released: 2016/03/14 Page 2635
© 2016 Gaming Standards Association (GSA)

NEW CLASS

</s2s:s2sMessage>

S2S™ Message Protocol v2.0 Chapter 40
Look Inside playerVoucher Class

Page 2636 Released: 2016/03/14
© 2016 Gaming Standards Association (GSA)

NEW CLASS

	Chapter 40 Look Inside playerVoucher Class
	40.1 Introduction
	40.1.1 Terminology
	40.1.2 End-Client Configuration Sequence Diagrams
	40.1.3 Voucher Status Request by Host
	40.1.4 Voucher Configuration Change by Host
	40.1.5 Voucher Configuration Request by Edge-Server
	40.1.6 Voucher Issuance and Redemption Sequence Diagrams
	40.1.7 Voucher Issuance Request by End-Client
	40.1.8 Voucher Redemption Request by End-Client
	40.1.9 Voucher States
	40.1.10 Validation Identifiers and Seeds
	40.1.11 Manual Authentication
	40.1.12 Property Identifier
	40.1.13 Client Identifier
	40.1.14 Player Identifier
	40.1.15 Configuration Identifier
	40.1.16 Transaction Identifier
	40.1.17 Wildcard Conventions
	40.1.18 Categorization of Class

	40.2 Data Set Summary
	40.2.1 End-Client Configuration Data Sets
	40.2.2 Voucher Reporting Data Sets

	40.3 Command Summary
	40.3.1 End-Client Configuration Commands
	40.3.2 Voucher Issuance & Redemption Commands
	40.3.3 Voucher Reporting Commands

	40.4 Request-Response Pairs
	40.4.1 End-Client Configuration Request-Response Pairs
	40.4.2 Voucher Issuance & Redemption Request-Response Pairs
	40.4.3 Voucher Reporting Request-Response Pairs

	40.5 System Services
	40.5.1 Critical Data

	40.6 Information Updates
	40.7 voucherState Data Set
	40.7.1 Data Set Description
	40.7.2 Attribute and Element Detail

	40.8 voucherConfig Data Set
	40.8.1 Data Set Description
	40.8.2 Attribute and Element Detail

	40.9 voucherStatus Data Set
	40.9.1 Data Set Description
	40.9.2 Attribute and Element Detail

	40.10 voucher Data Set
	40.10.1 Data Set Description
	40.10.2 Attribute and Element Detail

	40.11 getVoucherStatus Command
	40.11.1 Command Description
	40.11.2 Attribute and Element Detail

	40.12 setVoucherState Command
	40.12.1 Command Description
	40.12.2 Attribute and Element Detail

	40.13 getVoucherConfig Command
	40.13.1 Command Description
	40.13.2 Attribute and Element Detail

	40.14 setVoucherConfig Command
	40.14.1 Command Description
	40.14.2 Attribute and Element Detail

	40.15 reqVoucherStatus Command
	40.15.1 Command Description
	40.15.2 Attribute and Element Detail

	40.16 voucherStatusList Command
	40.16.1 Command Description
	40.16.2 Attribute and Element Detail

	40.17 reqVoucherConfig Command
	40.17.1 Command Description
	40.17.2 Attribute and Element Detail

	40.18 voucherConfigList Command
	40.18.1 Command Description
	40.18.2 Attribute and Element Detail

	40.19 voucherConfigAck Command
	40.19.1 Command Description
	40.19.2 Attribute and Element Detail

	40.20 getValidationIds Command
	40.20.1 Command Description
	40.20.1.1 Duplicate Commands

	40.20.2 Attribute and Element Detail

	40.21 validationIdList Command
	40.21.1 Command Description
	40.21.1.1 Duplicate Commands

	40.21.2 Attribute and Element Detail

	40.22 issueVoucher Command
	40.22.1 Command Description
	40.22.1.1 Duplicate Commands

	40.22.2 Attribute and Element Detail

	40.23 issueVoucherAck Command
	40.23.1 Command Description
	40.23.1.1 Duplicate Commands

	40.23.2 Attribute and Element Detail

	40.24 redeemVoucher Command
	40.24.1 Command Description
	40.24.1.1 Duplicate Commands

	40.24.2 Attribute and Element Detail

	40.25 authorizeVoucher Command
	40.25.1 Command Description
	40.25.1.1 Duplicate Commands

	40.25.2 Attribute and Element Detail

	40.26 commitVoucher Command
	40.26.1 Command Description
	40.26.1.1 Duplicate Commands

	40.26.2 Attribute and Element Detail

	40.27 commitVoucherAck Command
	40.27.1 Command Description
	40.27.1.1 Duplicate Commands

	40.27.2 Attribute and Element Detail

	40.28 voucherUpdate Command
	40.28.1 Command Description
	40.28.2 Attribute and Element Detail

	40.29 voucherUpdateAck Command
	40.29.1 Command Description
	40.29.2 Attribute and Element Detail

	40.30 queryVouchers Command
	40.30.1 Command Description
	40.30.1.1 Managing Results Lists

	40.30.2 Attribute and Element Detail

	40.31 voucherResults Command
	40.31.1 Command Description
	40.31.2 Attribute and Element Detail

	40.32 postVouchers Command
	40.32.1 Command Description
	40.32.2 Attribute and Element Detail

	40.33 postVouchersAck Command
	40.33.1 Command Description
	40.33.2 Attribute and Element Detail

	40.34 Data Types
	40.34.1 Enumeration Values for t_voucherClientActions
	40.34.2 Exception Codes for t_voucherClientExcs
	40.34.3 Enumeration Values for t_voucherHostActions
	40.34.4 Exception Codes for t_voucherHostExceptions
	40.34.5 Enumeration Values for t_voucherStates

	40.35 Error Codes
	40.36 Event Codes
	40.37 Examples
	40.37.1 setVoucherConfig-voucherConfigAck
	40.37.2 setVoucherState-voucherConfigAck
	40.37.3 getValidationIds-validationIdList
	40.37.4 issueVoucher-issueVoucherAck
	40.37.5 redeemVoucher-authorizeVoucher
	40.37.6 commitVoucher-commitVoucherAck

